1
|
Tripathi P, Agarwal S, Tewari S, Mandal K. Status of Catalase, Glutathione Peroxidase, Glutathione S-Transferase, and Myeloperoxidase Gene Polymorphisms in Beta-Thalassemia Major Patients to Assess Oxidative Injury and Its Association with Enzyme Activities. J Pediatr Genet 2021; 11:198-212. [DOI: 10.1055/s-0041-1723961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/16/2020] [Indexed: 10/21/2022]
Abstract
AbstractBeta-thalassemic patients require regular blood transfusion to sustain their life which leads to iron overload and causes oxidative stress. The aim of this study was to investigate the status of variants in genes including GSTM1, GSTT1 (null/present), CT-262 (C > T) and CT-89 (A > T), glutathione peroxidase (GPx), and myeloperoxidase (MPO). The genotype studies were conducted with 200 thalassemia major (TM) patients and 200 healthy controls. Genotyping of GST gene was performed by multiplex polymerase chain reaction (PCR), whereas for CT, GPx and MPO genesvariants PCR- restriction fragment length polymorphism technique used. However, the enzyme activities were measured only in the patients group to assess the association with the genotypes. All enzyme estimations were performed by ELISA. We observed higher frequency of GSTT1 null, CT-89 (A > T), GPx1 198 (C > T) and MPO-463 (G > A) polymorphisms in TM patient than healthy controls. However, CT-262 (C > T) polymorphism was not found to be statistically significantly different between patients and controls. Our results suggest that frequency of null allele of glutathione-S-transferase is significantly high among TM patients. The other alleles CT-89 (A > T), GPx1 198 (C > T), and MPO-463 (G > A) are linked to decreased CT, GPX, and MPO enzyme activities.
Collapse
Affiliation(s)
- Poonam Tripathi
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sarita Agarwal
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Satyendra Tewari
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Galehdari H, Azarshin SZ, Bijanzadeh M, Shafiei M. Polymorphism studies on microRNA targetome of thalassemia. Bioinformation 2018; 14:252-258. [PMID: 30108424 PMCID: PMC6077818 DOI: 10.6026/97320630014252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/06/2018] [Accepted: 05/06/2018] [Indexed: 11/23/2022] Open
Abstract
Thalassemia is one of the most prevalent hemoglobin disorders. It is caused by the decreased or absent synthesis of one globin chain that leads to moderate to severe hemolytic anemia in clinical complications. Some genetic factors cause these phenotypic variations by the alteration of gene expression. MicroRNAs (miRNAs) are post-transcriptional regulators in gene expression. Therefore, variations in 3'-untranslated region (3'-UTR) of target genes may affect gene expression. It is of interest to evaluate the impact of noncoding SNPs in thalassemia related genes on miRNA: mRNA interactions in the severity of thalassemia. Polymorphisms that alter miRNA: mRNA interactions were predicted using PolymiRTS and Mirsnpscore tools. Then, the effect of predicted target SNPs on thermodynamic stability, local RNA structure and regulatory elements was investigated using RNAhybrid, RNAsnp and RegulomeDB, respectively. The molecular functions and the Biological process of candidate genes were extracted and interaction network was created. Forty-six SNPs were predicted to affect 188 miRNA interactions. These results suggest that 3'-UTR SNP may affect gene expression and cause phenotypic variation in thalassemia patients.
Collapse
Affiliation(s)
- Hamid Galehdari
- Thalassemia & Hemoglobinopathy Research center, research institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Zohreh Azarshin
- Thalassemia & Hemoglobinopathy Research center, research institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehdi Bijanzadeh
- Thalassemia & Hemoglobinopathy Research center, research institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shafiei
- Thalassemia & Hemoglobinopathy Research center, research institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Kim JH, Lee MR, Hong YC. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes. ENVIRONMENTAL RESEARCH 2016; 147:324-30. [PMID: 26922413 DOI: 10.1016/j.envres.2016.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 05/22/2023]
Abstract
Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea; Department of Bioscience and Bioengineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Mee-Ri Lee
- (c)Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yun-Chul Hong
- (c)Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; (d)Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea.
| |
Collapse
|
4
|
Mohammdai-Asl J, Ramezani A, Norozi F, Alghasi A, Asnafi AA, Jaseb K, Saki N. The Influence of Polymorphisms in Disease Severity in β-Thalassemia. Biochem Genet 2015; 53:235-43. [DOI: 10.1007/s10528-015-9687-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/24/2015] [Indexed: 01/08/2023]
|
5
|
Liu Y, Xie L, Zhao J, Huang X, Song L, Luo J, Ma L, Li S, Qin X. Association between catalase gene polymorphisms and risk of chronic hepatitis B, hepatitis B virus-related liver cirrhosis and hepatocellular carcinoma in Guangxi population: a case-control study. Medicine (Baltimore) 2015; 94:e702. [PMID: 25837767 PMCID: PMC4554034 DOI: 10.1097/md.0000000000000702] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/24/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) play critical roles in hepatocarcinogenesis. The catalase (CAT) enzyme is involved in the repair of ROS. Therefore, we investigate the association between CAT gene polymorphisms and the risk of hepatocellular carcinoma (HCC). A total of 715 subjects were divided into 4 groups: 111 chronic hepatitis B (CHB) patients, 90 hepatitis B virus (HBV)-related liver cirrhosis (LC) patients, 266 HBV-HCC patients, and 248 healthy controls. The polymerase chain reaction-restriction fragment length polymorphism strategy was used to detect CAT gene rs1001179, rs769217, and rs7943316 polymorphisms. Binary logistic regression analyses adjusting for sex, age, ethnicity, smoking and alcohol consumption, and body mass index suggested that subjects carrying the rs769217 T allele were at marginally increased risk of CHB, LC, and HCC, with adjusted odds ratios (ORs) of 1.51 (95% confidence interval [CI] = 1.04-2.20, P = 0.029), 1.48 (95% CI = 1.03-2.14, P = 0.035), and 1.51 (95% CI = 1.14-1.98, P = 0.004), respectively. Similarly, those individuals carrying the rs769217 TT genotype had a moderately increased risk of CHB, LC, and HCC, with adjusted ORs of 2.11 (95% CI = 1.05-4.22, P = 0.035), 2.00 (95% CI, 1.01-3.95, P = 0.047), and 1.93 (95% CI = 1.14-3.28, P = 0.015), respectively. Moreover, subjects carrying the rs769217 CT genotype and at least 1 copy of the T allele (dominant model) were 1.78 times and 1.83 times more likely to develop HCC, respectively (OR = 1.78, 95% CI = 1.16-2.73, P = 0.009 and OR = 1.83, 95% CI = 1.23-2.71, P = 0.003). This association between CAT rs769217 T alleles and HCC risk is significantly strengthened among men, nonsmokers, nondrinkers, and among individuals <50 years of age. Furthermore, we found 1 high-risk haplotype GTA for CHB (OR = 1.45, 95% CI = 1.05-2.01) and 1 protective haplotype GCA for HCC risk (OR = 0.67, 95% CI = 0.52-0.87). We did not found any significant difference in CAT rs1001179 and rs7943316 polymorphisms between controls and cases. Our findings suggest that the CAT rs769217 T allele is associated with increased risk of CHB, HBV-LC, and HBV-HCC in Guangxi population.
Collapse
Affiliation(s)
- Yanqiong Liu
- From the Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nagy T, Paszti E, Kaplar M, Bhattoa HP, Goth L. Further acatalasemia mutations in human patients from Hungary with diabetes and microcytic anemia. Mutat Res 2015; 772:10-14. [PMID: 25772105 DOI: 10.1016/j.mrfmmm.2014.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 12/11/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
In blood, the hydrogen peroxide concentration is regulated by catalase. Decreased activity of catalase may lead to increased hydrogen peroxide concentration, which may contribute to the manifestation of age-related disease. The aim of this study is to examine association of decreased blood catalase activity and catalase exon mutations in patients (n=617) with diabetes (n=380), microcytic anemia (n=58), beta-thalassemia (n=43) and presbycusis (n=136) and in controls (n=295). Overall, 51 patients (8.3%) had less than half of normal blood catalase activity. Their genomic DNA was used for mutation screening of all exons and exon/intron boundaries with polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and PCR-heteroduplex analyses, and mutations were verified with nucleotide sequencing. Seven patients (type 2 diabetes (n=3), gestational diabetes (n=1), microcytic anemia (n=2)) had four novel catalase exon mutations namely, c.106_107insC, p.G36Afs*5(n=3, Hungarian type G1), c.379C>T, p.R127Y (n=2, Hungarian type H1), c.390T>C, p.R129L, (n=1, Hungarian type H2) and c.431A>T, p.N143V (n=1, Hungarian type H3). In patients with decreased blood catalase, the incidence of acatalasemia mutations was significantly high (P<0.0002) in microcytic anemia, type 2 and gestational diabetes. The four novel mutations were probably responsible for low blood catalase activity in 7/51 patients. In the remainder of the cases, other polymorphisms and epigenetic/regulatory factors may be involved.
Collapse
Affiliation(s)
- Terez Nagy
- Department of Medical Laboratory and Diagnostic Imaging, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Paszti
- Department of Otolaryngology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklos Kaplar
- Department of Internal Medicine, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Goth
- Department of Medical Laboratory and Diagnostic Imaging, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
7
|
Abstract
It is common knowledge that thalassemic patients are under significant oxidative stress. Chronic hemolysis, frequent blood transfusion, and increased intestinal absorption of iron are the main factors that result in iron overload with its subsequent pathophysiologic complications. Iron overload frequently associates with the generation of redox-reactive labile iron, which in turn promotes the production of other reactive oxygen species (ROS). If not neutralized, uncontrolled production of ROS often leads to damage of various intra- and extracellular components such as DNA, proteins, lipids, and small antioxidant molecules among others. A number of endogenous and exogenous defense mechanisms can neutralize and counteract the damaging effects of labile iron and the reactive substances associated with it. Endogenous antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and ferroxidase, may directly or sequentially terminate the activities of ROS. Nonenzymatic endogenous defense mechanisms include metal binding proteins (ceruloplasmin, haptoglobin, albumin, and others) and endogenously produced free radical scavengers (glutathione (GSH), ubiquinols, and uric acid). Exogenous agents that are known to function as antioxidants (vitamins C and E, selenium, and zinc) are mostly diet-derived. In this review, we explore recent findings related to various antioxidative mechanisms operative in thalassemic patients with special emphasis on protein antioxidants.
Collapse
Affiliation(s)
- Samir Awadallah
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
8
|
|