1
|
Tanner BCW. Design Principles and Benefits of Spatially Explicit Models of Myofilament Function. Methods Mol Biol 2024; 2735:43-62. [PMID: 38038843 DOI: 10.1007/978-1-0716-3527-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Spatially explicit models of muscle contraction include fine-scale details about the spatial, kinetic, and/or mechanical properties of the biological processes being represented within the model network. Over the past 25 years, this has primarily consisted of a set of mathematical and computational algorithms representing myosin cross-bridge activity, Ca2+-activation of contraction, and ensemble force production within a half-sarcomere representation of the myofilament network. Herein we discuss basic design principles associated with creating spatially explicit models of myofilament function, as well as model assumptions underlying model development. A brief overview of computational approaches is introduced. Opportunities for new model directions that could investigate coupled regulatory pathways between the thick-filament and thin-filaments are also presented. Given the modular design and flexibility associated with spatially explicit models, we highlight some advantages of this approach compared to other model formulations.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
2
|
Fenwick AJ, Wood AM, Tanner BCW. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction. Arch Biochem Biophys 2021; 703:108855. [PMID: 33781771 DOI: 10.1016/j.abb.2021.108855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Striated muscle contraction is initiated by Ca2+ binding to, and activating, thin filament regulatory units (RU) within the sarcomere, which then allows myosin cross-bridges from the opposing thick filament to bind actin and generate force. The amount of overlap between the filaments dictates how many potential cross-bridges are capable of binding, and thus how force is generated by the sarcomere. Myopathies and atrophy can impair muscle function by limiting cross-bridge interactions between the filaments, which can occur when the length of the thin filament is reduced or when RU function is disrupted. To investigate how variations in thin filament length and RU density affect ensemble cross-bridge behavior and force production, we simulated muscle contraction using a spatially explicit computational model of the half-sarcomere. Thin filament RUs were disabled either uniformly from the pointed end of the filament (to model shorter thin filament length) or randomly throughout the length of the half-sarcomere. Both uniform and random RU 'knockout' schemes decreased overall force generation during maximal and submaximal activation. The random knockout scheme also led to decreased calcium sensitivity and cooperativity of the force-pCa relationship. We also found that the rate of force development slowed with the random RU knockout, compared to the uniform RU knockout or conditions of normal RU activation. These findings imply that the relationship between RU density and force production within the sarcomere involves more complex coordination than simply the raw number of RUs available for myosin cross-bridge binding, and that the spatial pattern in which activatable RU are distributed throughout the sarcomere influences the dynamics of force production.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Alexander M Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
3
|
Fenwick AJ, Wood AM, Tanner BCW. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output. PLoS One 2017; 12:e0190335. [PMID: 29284062 PMCID: PMC5746261 DOI: 10.1371/journal.pone.0190335] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationship between force, energy use, and the velocity of contraction has important implications for understanding muscle efficiency, but the molecular mechanisms underlying this behavior remain poorly understood. Here we used spatially-explicit, multi-filament models of Ca2+-regulated force production within a half-sarcomere to simulate how force production, energy utilization, and the number of bound cross-bridges are affected by dynamic changes in sarcomere length. These computational simulations show that cross-bridge binding increased during slow-velocity concentric and eccentric contractions, compared to isometric contractions. Over the full ranges of velocities that we simulated, cross-bridge cycling and energy utilization (i.e. ATPase rates) increased during shortening, and decreased during lengthening. These findings are consistent with the Fenn effect, but arise from a complicated relationship between velocity-dependent cross-bridge recruitment and cross-bridge cycling kinetics. We also investigated how force production, power output, and energy utilization varied with cross-bridge and myofilament compliance, which is impossible to address under typical experimental conditions. These important simulations show that increasing cross-bridge compliance resulted in greater cross-bridge binding and ATPase activity, but less force was generated per cross-bridge and throughout the sarcomere. These data indicate that the efficiency of force production decreases in a velocity-dependent manner, and that this behavior is sensitive to cross-bridge compliance. In contrast, significant effects of myofilament compliance on force production were only observed during isometric contractions, suggesting that changes in myofilament compliance may not influence power output during non-isometric contractions as greatly as changes in cross-bridge compliance. These findings advance our understanding of how cross-bridge and myofilament properties underlie velocity-dependent changes in contractile efficiency during muscle movement.
Collapse
Affiliation(s)
- Axel J. Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Alexander M. Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Bertrand C. W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
4
|
Pulcastro HC, Awinda PO, Methawasin M, Granzier H, Dong W, Tanner BCW. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice. Front Physiol 2016; 7:322. [PMID: 27524973 PMCID: PMC4966298 DOI: 10.3389/fphys.2016.00322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023] Open
Abstract
Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20ΔRRM) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20ΔRRM animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20ΔRRM on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca2+-activated, skinned papillary muscle strips from Rbm20ΔRRM and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca2+-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20ΔRRM vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20ΔRRM myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive mechanical characteristics of the myocardium influence ensemble cross-bridge behavior and maintenance of tension generation throughout the sarcomere.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona Tucson, AZ, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona Tucson, AZ, USA
| | - Wenji Dong
- Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, USA; Voiland School of Chemical Engineering and Bioengineering, Washington State UniversityPullman, WA, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| |
Collapse
|
5
|
Pulcastro HC, Awinda PO, Breithaupt JJ, Tanner BCW. Effects of myosin light chain phosphorylation on length-dependent myosin kinetics in skinned rat myocardium. Arch Biochem Biophys 2016; 601:56-68. [PMID: 26763941 DOI: 10.1016/j.abb.2015.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 11/19/2022]
Abstract
Myosin force production is Ca(2+)-regulated by thin-filament proteins and sarcomere length, which together determine the number of cross-bridge interactions throughout a heartbeat. Ventricular myosin regulatory light chain-2 (RLC) binds to the neck of myosin and modulates contraction via its phosphorylation state. Previous studies reported regional variations in RLC phosphorylation across the left ventricle wall, suggesting that RLC phosphorylation could alter myosin behavior throughout the heart. We found that RLC phosphorylation varied across the left ventricle wall and that RLC phosphorylation was greater in the right vs. left ventricle. We also assessed functional consequences of RLC phosphorylation on Ca(2+)-regulated contractility as sarcomere length varied in skinned rat papillary muscle strips. Increases in RLC phosphorylation and sarcomere length both led to increased Ca(2+)-sensitivity of the force-pCa relationship, and both slowed cross-bridge detachment rate. RLC-phosphorylation slowed cross-bridge rates of MgADP release (∼30%) and MgATP binding (∼50%) at 1.9 μm sarcomere length, whereas RLC phosphorylation only slowed cross-bridge MgATP binding rate (∼55%) at 2.2 μm sarcomere length. These findings suggest that RLC phosphorylation influences cross-bridge kinetics differently as sarcomere length varies and support the idea that RLC phosphorylation could vary throughout the heart to meet different contractile demands between the left and right ventricles.
Collapse
Affiliation(s)
- Hannah C Pulcastro
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Jason J Breithaupt
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620, USA.
| |
Collapse
|
6
|
Miller MS, Callahan DM, Toth MJ. Skeletal muscle myofilament adaptations to aging, disease, and disuse and their effects on whole muscle performance in older adult humans. Front Physiol 2014; 5:369. [PMID: 25309456 PMCID: PMC4176476 DOI: 10.3389/fphys.2014.00369] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/07/2014] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle contractile function declines with aging, disease, and disuse. In vivo muscle contractile function depends on a variety of factors, but force, contractile velocity and power generating capacity ultimately derive from the summed contribution of single muscle fibers. The contractile performance of these fibers are, in turn, dependent upon the isoform and function of myofilament proteins they express, with myosin protein expression and its mechanical and kinetic characteristics playing a predominant role. Alterations in myofilament protein biology, therefore, may contribute to the development of functional limitations and disability in these conditions. Recent studies suggest that these conditions are associated with altered single fiber performance due to decreased expression of myofilament proteins and/or changes in myosin-actin cross-bridge interactions. Furthermore, cellular and myofilament-level adaptations are related to diminished whole muscle and whole body performance. Notably, the effect of these various conditions on myofilament and single fiber function tends to be larger in older women compared to older men, which may partially contribute to their higher rates of disability. To maintain functionality and provide the most appropriate and effective countermeasures to aging, disease, and disuse in both sexes, a more thorough understanding is needed of the contribution of myofilament adaptations to functional disability in older men and women and their contribution to tissue level function and mobility impairment.
Collapse
Affiliation(s)
- Mark S Miller
- Department of Kinesiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, MA, USA
| | - Damien M Callahan
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont Burlington, VT, USA
| | - Michael J Toth
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont Burlington, VT, USA ; Department of Medicine, College of Medicine, University of Vermont Burlington, VT, USA
| |
Collapse
|