1
|
Madkhali Y, Rondon AMR, Featherby S, Maraveyas A, Greenman J, Ettelaie C. Factor VIIa Regulates the Level of Cell-Surface Tissue Factor through Separate but Cooperative Mechanisms. Cancers (Basel) 2021; 13:cancers13153718. [PMID: 34359618 PMCID: PMC8345218 DOI: 10.3390/cancers13153718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Under normal conditions, blood coagulation is suppressed to prevent thrombosis. However, during inflammatory conditions such as injury or disease conditions, the protein “tissue factor (TF)” is expressed on the surface of the cells and is also released into the bloodstream within cell-derived vesicles called “microvesicles”. TF appears first at the site of trauma which makes TF suitable for determining the extent of damage and instructing cells to proliferate and repair, or if severely damaged, to die. The relationship between cancer and thrombosis was reported in the early part of the 19th century. Cancer cells and particularly those with aggressive tendencies have the ability to produce, and then optimise the amount of TF on the cell, in order to maximise the pro-survival and proliferative properties of this protein. This study has demonstrated some of the mechanisms by which cells control excessive amounts of TF, to levels ideal for tumour survival and growth. Abstract Procoagulant activity of tissue factor (TF) in response to injury or inflammation is accompanied with cellular signals which determine the fate of cells. However, to prevent excessive signalling, TF is rapidly dissipated through release into microvesicles, and/or endocytosis. To elucidate the mechanism by which TF signalling may become moderated on the surface of cells, the associations of TF, fVII/fVIIa, PAR2 and caveolin-1 on MDA-MB-231, BxPC-3 and 786-O cells were examined and compared to that in cells lacking either fVII/fVIIa or TF. Furthermore, the localisation of labelled-recombinant TF with cholesterol-rich lipid rafts was explored on the surface of primary human blood dermal endothelial cells (HDBEC). Finally, by disrupting the caveolae on the surface of HDBEC, the outcome on TF-mediated signalling was examined. The association between TF and PAR2 was found to be dependent on the presence of fVIIa. Interestingly, the presence of TF was not pre-requisite for the association between fVII/fVIIa and PAR2 but was significantly enhanced by TF, which was also essential for the proliferative signal. Supplementation of HDBEC with exogenous TF resulted in early release of fVII/fVIIa from caveolae, followed by re-sequestration of TF-fVIIa. Addition of labelled-TF resulted in the accumulation within caveolin-1-containing cholesterol-rich regions and was also accompanied with the increased assimilation of cell-surface fVIIa. Disruption of the caveolae/rafts in HDBEC using MβCD enhanced the TF-mediated cellular signalling. Our data supports a hypothesis that cells respond to the exposure to TF by moderating the signalling activities as well as the procoagulant activity of TF, through incorporation into the caveolae/lipid rafts.
Collapse
Affiliation(s)
- Yahya Madkhali
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, P.O. Box 66, Majmaah 11952, Saudi Arabia
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Sophie Featherby
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - John Greenman
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
| | - Camille Ettelaie
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (Y.M.); (S.F.); (J.G.)
- Correspondence: ; Tel.: +44-(0)1482-465-528; Fax: +44-(0)1482-465-458
| |
Collapse
|
2
|
Protease-activated receptors are potential regulators in the development of arterial endofibrosis in high-performance athletes. J Vasc Surg 2018; 69:1243-1250. [PMID: 30314721 DOI: 10.1016/j.jvs.2018.05.220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE High-performance athletes can develop symptomatic arterial flow restriction during exercise caused by endofibrosis. The pathogenesis is poorly understood; however, coagulation enzymes, such as tissue factor (TF) and coagulation factor Xa, might contribute to the fibrotic process, which is mainly regulated through activation of protease-activated receptors (PARs). Therefore, the aim of this explorative study was to evaluate the presence of coagulation factors and PARs in endofibrotic tissue, which might be indicative of their potential role in the natural development of endofibrosis. METHODS External iliac arterial specimens with endofibrosis (n = 19) were collected during surgical interventions. As control, arterial segments of the external iliac artery (n = 20) were collected post mortem from individuals with no medical history of cardiovascular disease who donated their body to medical science. Arteries were paraffinized and cut in tissue sections for immunohistochemical analysis. Positive staining within lesions was determined with ImageJ software (National Institutes of Health, Bethesda, Md). RESULTS Endofibrotic segments contained a neointima, causing intraluminal stenosis, which was highly positive for collagen (+150%; P < .01) and elastin (+148%; P < .01) in comparison with controls. Intriguingly, endofibrosis was not limited to the intima because collagen (+213%) and elastin (+215%) were also significantly elevated in the media layer of endofibrotic segments. These findings were accompanied by significantly increased α-smooth muscle actin-positive cells, morphologically compatible with the presence of myofibroblasts. In addition, PAR1 and PAR4 and the membrane receptor TF were increased as well as coagulation factor X. CONCLUSIONS We showed that myofibroblasts and the accompanying collagen and elastin synthesis might be key factors in the development of endofibrosis. The special association with increased presence of PARs, factor X, and TF suggests that protease-mediated cell signaling could be a contributing component in the mechanisms leading to endofibrosis.
Collapse
|
3
|
ENMD-1068 inhibits liver fibrosis through attenuation of TGF-β1/Smad2/3 signaling in mice. Sci Rep 2017; 7:5498. [PMID: 28710422 PMCID: PMC5511273 DOI: 10.1038/s41598-017-05190-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022] Open
Abstract
Protease-activated receptor 2 (PAR-2) plays an important role in the pathogenesis of liver fibrosis. We studied the effect of N1-3-methylbutyryl-N4-6-aminohexanoyl-piperazine (ENMD-1068), a PAR-2 antagonist, on the development of CCl4-induced liver fibrosis in mice and activation of hepatic stellate cells (HSCs) isolated from the mice. Before CCl4 injection, the mice were injected intraperitoneally with either 25 mg/kg or 50 mg/kg ENMD-1068 or with 200 μL of the vehicle control twice per week for 4 weeks. The isolated HSCs were stimulated by TGF-β1 with or without ENMD-1068 to evaluate the role of PAR-2 in TGF-β1 induced HSCs activation and collagen production. We showed that the levels of ALT/AST, collagen content, and α-smooth muscle actin (α-SMA) were significantly reduced by treatment with ENMD-1068 in CCl4-induced fibrotic mice. Interestingly, we found TGF-β1 signaling-related expression levels of α-SMA, type I and III collagen, and C-terminal phosphorylation of Smad2/3 were significantly decreased in the ENMD-1068 treated HSCs. Moreover, we showed ENMD-1068 treatment inhibited trypsin or SLIGRL-NH2 stimulated calcium release and TGF-β1 induced Smad transcriptional activity in HSCs. We demonstrated that ENMD-1068 reduces HSCs activation and collagen expression through the inhibiton of TGF-β1/Smad signal transduction.
Collapse
|
4
|
Mußbach F, Ungefroren H, Günther B, Katenkamp K, Henklein P, Westermann M, Settmacher U, Lenk L, Sebens S, Müller JP, Böhmer FD, Kaufmann R. Proteinase-activated receptor 2 (PAR2) in hepatic stellate cells - evidence for a role in hepatocellular carcinoma growth in vivo. Mol Cancer 2016; 15:54. [PMID: 27473374 PMCID: PMC4966804 DOI: 10.1186/s12943-016-0538-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Previous studies have established that proteinase-activated receptor 2 (PAR2) promotes migration and invasion of hepatocellular carcinoma (HCC) cells, suggesting a role in HCC progression. Here, we assessed the impact of PAR2 in HCC stromal cells on HCC growth using LX-2 hepatic stellate cells (HSCs) and Hep3B cells as model. METHODS PAR2 expression and function in LX-2 cells was analysed by RT-PCR, confocal immunofluorescence, electron microscopy, and [Ca(2+)]i measurements, respectively. The impact of LX-2-expressed PAR2 on tumour growth in vivo was monitored using HCC xenotransplantation experiments in SCID mice, in which HCC-like tumours were induced by coinjection of LX-2 cells and Hep3B cells. To characterise the effects of PAR2 activation in LX-2 cells, various signalling pathways were analysed by immunoblotting and proteome profiler arrays. RESULTS Following verification of functional PAR2 expression in LX-2 cells, in vivo studies showed that these cells promoted tumour growth and angiogenesis of HCC xenografts in mice. These effects were significantly reduced when F2RL1 (encoding PAR2) was downregulated by RNA interference (RNAi). In vitro studies confirmed these results demonstrating RNAi mediated inhibition of PAR2 attenuated Smad2/3 activation in response to TGF-β1 stimulation in LX-2 cells and blocked the pro-mitotic effect of LX-2 derived conditioned medium on Hep3B cells. Furthermore, PAR2 stimulation with trypsin or a PAR2-selective activating peptide (PAR2-AP) led to activation of different intracellular signalling pathways, an increased secretion of pro-angiogenic and pro-mitotic factors and proteinases, and an enhanced migration rate across a collagen-coated membrane barrier. Silencing F2RL1 by RNAi or pharmacological inhibition of Src, hepatocyte growth factor receptor (Met), platelet-derived growth factor receptor (PDGFR), p42/p44 mitogen activated protein kinase (MAPK) or matrix-metalloproteinases (MMPs) blocked PAR2-AP-induced migration. CONCLUSION PAR2 in HSCs plays a crucial role in promoting HCC growth presumably by mediating migration and secretion of pro-angiogenic and pro-mitotic factors. Therefore, PAR2 in stromal HSCs may have relevance as a therapeutic target of HCC.
Collapse
Affiliation(s)
- Franziska Mußbach
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH and University of Lübeck, Lübeck, Germany
| | - Bernd Günther
- Service Unit Small Animal, Research Center Lobeda (FZL), Jena University Hospital, Jena, Germany
| | | | | | | | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany
| | - Lennart Lenk
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Group Inflammatory Carcinogenesis, Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Frank-Dietmar Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, D-07747, Jena, Germany.
| |
Collapse
|