1
|
Moné Y, Earl JP, Król JE, Ahmed A, Sen B, Ehrlich GD, Lapides JR. Evidence supportive of a bacterial component in the etiology for Alzheimer's disease and for a temporal-spatial development of a pathogenic microbiome in the brain. Front Cell Infect Microbiol 2023; 13:1123228. [PMID: 37780846 PMCID: PMC10534976 DOI: 10.3389/fcimb.2023.1123228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/05/2023] [Indexed: 10/03/2023] Open
Abstract
Background Over the last few decades, a growing body of evidence has suggested a role for various infectious agents in Alzheimer's disease (AD) pathogenesis. Despite diverse pathogens (virus, bacteria, fungi) being detected in AD subjects' brains, research has focused on individual pathogens and only a few studies investigated the hypothesis of a bacterial brain microbiome. We profiled the bacterial communities present in non-demented controls and AD subjects' brains. Results We obtained postmortem samples from the brains of 32 individual subjects, comprising 16 AD and 16 control age-matched subjects with a total of 130 samples from the frontal and temporal lobes and the entorhinal cortex. We used full-length 16S rRNA gene amplification with Pacific Biosciences sequencing technology to identify bacteria. We detected bacteria in the brains of both cohorts with the principal bacteria comprising Cutibacterium acnes (formerly Propionibacterium acnes) and two species each of Acinetobacter and Comamonas genera. We used a hierarchical Bayesian method to detect differences in relative abundance among AD and control groups. Because of large abundance variances, we also employed a new analysis approach based on the Latent Dirichlet Allocation algorithm, used in computational linguistics. This allowed us to identify five sample classes, each revealing a different microbiota. Assuming that samples represented infections that began at different times, we ordered these classes in time, finding that the last class exclusively explained the existence or non-existence of AD. Conclusions The AD-related pathogenicity of the brain microbiome seems to be based on a complex polymicrobial dynamic. The time ordering revealed a rise and fall of the abundance of C. acnes with pathogenicity occurring for an off-peak abundance level in association with at least one other bacterium from a set of genera that included Methylobacterium, Bacillus, Caulobacter, Delftia, and Variovorax. C. acnes may also be involved with outcompeting the Comamonas species, which were strongly associated with non-demented brain microbiota, whose early destruction could be the first stage of disease. Our results are also consistent with a leaky blood-brain barrier or lymphatic network that allows bacteria, viruses, fungi, or other pathogens to enter the brain.
Collapse
Affiliation(s)
- Yves Moné
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Joshua P Earl
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jarosław E Król
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Azad Ahmed
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Bhaswati Sen
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jeffrey R Lapides
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Grover S, Pham T, Jones A, Sinobas-Pereira C, Villoch Diaz Maurino M, Garrad EC, Makoni NJ, Parks A, Domalewski RJ, Riggio G, An H, Chen K, Nichols MR. A new class of monoclonal Aβ antibodies selectively targets and triggers deposition of Aβ protofibrils. J Neurochem 2023; 165:860-873. [PMID: 37002186 DOI: 10.1111/jnc.15817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Aggregation and accumulation of amyloid-β peptide (Aβ) are a critical trigger for the onset of Alzheimer's disease (AD). While the plaques are the most outstanding Aβ pathological feature, much of the recent research emphasis has been on soluble Aβ species because of their diffusible, proinflammatory, and toxic properties. The focus on soluble aggregated Aβ species has also increased the interest in antibodies that are selective for different Aβ conformations. In the current study, we developed and characterized a new class of monoclonal antibodies (referred to as mAbSL) that are selective for Aβ protofibrils. Cloning and sequencing of the heavy and light chain variable regions for multiple antibodies identified sequence characteristics that may impart the conformational selectivity by the antibodies. Transfection of FreeStyle 293F cells with the plasmids permitted in-house expression and purification of mAbSL antibodies along with non-conformation-selective Aβ monoclonal antibodies (Aβ mAbs). Several of the purified mAbSL antibodies demonstrated significant affinity and selectivity for Aβ42 protofibrils compared with Aβ42 monomers and Aβ42 fibrils. Competition ELISA assays assessing the best overall antibody, mAbSL 113, yielded affinity constants of 7 nM for the antibody-Aβ42 protofibril interaction, while the affinity for either Aβ42 monomers or Aβ42 fibrils was roughly 80 times higher. mAbSL 113 significantly inhibited Aβ42 monomer aggregation by a unique mechanism compared with the inhibition displayed by Aβ mAb 513. Aβ42 protofibril dynamics were also markedly altered in the presence of mAbSL 113, whereby insoluble complex formation and protofibril deposition were stimulated by the antibody at low substoichiometric molar ratios. As the field contemplates the therapeutic effectiveness of Aβ conformation-selective antibodies, the findings presented here demonstrate new information on a monoclonal antibody that selectively targets Aβ protofibrils and impacts Aβ dynamics.
Collapse
Affiliation(s)
- Shikha Grover
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Thao Pham
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Anna Jones
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Cristina Sinobas-Pereira
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | | | - Evan C Garrad
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Nyasha J Makoni
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Antanisha Parks
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Ryan J Domalewski
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Gabriel Riggio
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Hannah An
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | | | - Michael R Nichols
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Geerts H, Walker M, Rose R, Bergeler S, van der Graaf PH, Schuck E, Koyama A, Yasuda S, Hussein Z, Reyderman L, Swanson C, Cabal A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimer's disease. CPT Pharmacometrics Syst Pharmacol 2023; 12:444-461. [PMID: 36632701 PMCID: PMC10088087 DOI: 10.1002/psp4.12912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-mediated removal of aggregated β-amyloid (Aβ) is the current, most clinically advanced potential disease-modifying treatment approach for Alzheimer's disease. We describe a quantitative systems pharmacology (QSP) approach of the dynamics of Aβ monomers, oligomers, protofibrils, and plaque using a detailed microscopic model of Aβ40 and Aβ42 aggregation and clearance of aggregated Aβ by activated microglia cells, which is enhanced by the interaction of antibody-bound Aβ. The model allows for the prediction of Aβ positron emission tomography (PET) imaging load as measured by a standardized uptake value ratio. A physiology-based pharmacokinetic model is seamlessly integrated to describe target exposure of monoclonal antibodies and simulate dynamics of cerebrospinal fluid (CSF) and plasma biomarkers, including CSF Aβ42 and plasma Aβ42 /Aβ40 ratio biomarkers. Apolipoprotein E genotype is implemented as a difference in microglia clearance. By incorporating antibody-bound, plaque-mediated macrophage activation in the perivascular compartment, the model also predicts the incidence of amyloid-related imaging abnormalities with edema (ARIA-E). The QSP platform is calibrated with pharmacological and clinical information on aducanumab, bapineuzumab, crenezumab, gantenerumab, lecanemab, and solanezumab, predicting adequately the change in PET imaging measured amyloid load and the changes in the plasma Aβ42 /Aβ40 ratio while slightly overestimating the change in CSF Aβ42 . ARIA-E is well predicted for all antibodies except bapineuzumab. This QSP model could support the clinical trial design of different amyloid-modulating interventions, define optimal titration and maintenance schedules, and provide a first step to understand the variability of biomarker response in clinical practice.
Collapse
|
4
|
D’Andrea L, Stringhi R, Di Luca M, Marcello E. Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules 2021; 11:biom11091261. [PMID: 34572474 PMCID: PMC8467578 DOI: 10.3390/biom11091261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.
Collapse
|
5
|
Whiten DR, Brownjohn PW, Moore S, De S, Strano A, Zuo Y, Haneklaus M, Klenerman D, Livesey FJ. Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer's disease neurons. Brain Commun 2020; 2:fcaa146. [PMID: 33543132 PMCID: PMC7850285 DOI: 10.1093/braincomms/fcaa146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/24/2023] Open
Abstract
In addition to increased aberrant protein aggregation, inflammation has been proposed as a key element in the pathogenesis and progression of Alzheimer’s disease. How inflammation interacts with other disease pathways and how protein aggregation increases during disease are not clear. We used single-molecule imaging approaches and membrane permeabilization assays to determine the effect of chronic exposure to tumour necrosis factor, a master proinflammatory cytokine, on protein aggregation in human-induced pluripotent stem cell-derived neurons harbouring monogenic Alzheimer’s disease mutations. We report that exposure of Alzheimer’s disease neurons, but not control neurons, to tumour necrosis factor induces substantial production of extracellular protein aggregates. Aggregates from Alzheimer’s disease neurons are composed of amyloid-β and α-synuclein and induce significant permeabilization of lipid membranes in an assay of pathogenicity. These findings provide support for a causal relationship between two crucial processes in Alzheimer’s disease pathogenesis and suggest that targeting inflammation, particularly tumour necrosis factor, may have beneficial downstream effects on ameliorating aberrant protein aggregation and accumulation.
Collapse
Affiliation(s)
- Daniel R Whiten
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Philip W Brownjohn
- Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Steven Moore
- Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alessio Strano
- Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Yukun Zuo
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Moritz Haneklaus
- Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0XY, UK
| | - Frederick J Livesey
- Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| |
Collapse
|
6
|
Li S, Selkoe DJ. A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer's brain. J Neurochem 2020; 154:583-597. [PMID: 32180217 PMCID: PMC7487043 DOI: 10.1111/jnc.15007] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Uddin MS, Kabir MT, Tewari D, Mamun AA, Mathew B, Aleya L, Barreto GE, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer's disease. J Neurol Sci 2020; 416:116974. [PMID: 32559516 DOI: 10.1016/j.jns.2020.116974] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) is an intricate molecule that interacts with several biomolecules and/or produces insoluble assemblies and eventually the nonphysiological depositions of its alternate with normal neuronal conditions leading to Alzheimer's disease (AD). Aβ is formed through the proteolytic cleavage of the amyloid precursor protein (APP). Significant efforts are being made to explore the exact role of Aβ in AD pathogenesis. It is believed that the deposition of Aβ in the brain takes place from Aβ components which are derived from the brain itself. However, recent evidence suggests that Aβ derived also from the periphery and hence the Aβ circulating in the blood is capable of penetrating the blood-brain barrier (BBB) and the role of Aβ derived from the periphery is largely unknown so far. Therefore, Aβ origin determination and the underlying mechanisms of its pathological effects are of considerable interest in exploring effective therapeutic strategies. The purpose of this review is to provide a novel insight into AD pathogenesis based on Aβ in both the brain and periphery and highlight new therapeutic avenues to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
De S, Whiten DR, Ruggeri FS, Hughes C, Rodrigues M, Sideris DI, Taylor CG, Aprile FA, Muyldermans S, Knowles TPJ, Vendruscolo M, Bryant C, Blennow K, Skoog I, Kern S, Zetterberg H, Klenerman D. Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathol Commun 2019; 7:120. [PMID: 31349874 PMCID: PMC6659275 DOI: 10.1186/s40478-019-0777-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/14/2023] Open
Abstract
Soluble aggregates of amyloid-β (Aβ) have been associated with neuronal and synaptic loss in Alzheimer's disease (AD). However, despite significant recent progress, the mechanisms by which these aggregated species contribute to disease progression are not fully determined. As the analysis of human cerebrospinal fluid (CSF) provides an accessible window into the molecular changes associated with the disease progression, we characterised soluble aggregates present in CSF samples from individuals with AD, mild cognitive impairment (MCI) and healthy controls using a range of sensitive biophysical methods. We used super-resolution imaging and atomic force microscopy to characterise the size and structure of the aggregates present in CSF and correlate this with their ability to permeabilise lipid membranes and induce an inflammatory response. We found that these aggregates are extremely heterogeneous and exist in a range of sizes, varying both structurally and in their mechanisms of toxicity during the disease progression. A higher proportion of small aggregates of Aβ that can cause membrane permeabilization are found in MCI CSF; in established AD, a higher proportion of the aggregates were larger and more prone to elicit a pro-inflammatory response in glial cells, while there was no detectable change in aggregate concentration. These results show that large aggregates, some longer than 100 nm, are present in the CSF of AD patients and suggest that different neurotoxic mechanisms are prevalent at different stages of AD.
Collapse
|
9
|
De S, Wirthensohn DC, Flagmeier P, Hughes C, Aprile FA, Ruggeri FS, Whiten DR, Emin D, Xia Z, Varela JA, Sormanni P, Kundel F, Knowles TPJ, Dobson CM, Bryant C, Vendruscolo M, Klenerman D. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat Commun 2019; 10:1541. [PMID: 30948723 PMCID: PMC6449370 DOI: 10.1038/s41467-019-09477-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
Protein aggregation is a complex process resulting in the formation of heterogeneous mixtures of aggregate populations that are closely linked to neurodegenerative conditions, such as Alzheimer's disease. Here, we find that soluble aggregates formed at different stages of the aggregation process of amyloid beta (Aβ42) induce the disruption of lipid bilayers and an inflammatory response to different extents. Further, by using gradient ultracentrifugation assay, we show that the smaller aggregates are those most potent at inducing membrane permeability and most effectively inhibited by antibodies binding to the C-terminal region of Aβ42. By contrast, we find that the larger soluble aggregates are those most effective at causing an inflammatory response in microglia cells and more effectively inhibited by antibodies targeting the N-terminal region of Aβ42. These findings suggest that different toxic mechanisms driven by different soluble aggregated species of Aβ42 may contribute to the onset and progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Suman De
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - David C Wirthensohn
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Patrick Flagmeier
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Craig Hughes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Francesco S Ruggeri
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Daniel R Whiten
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Derya Emin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Zengjie Xia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Juan A Varela
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Franziska Kundel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 1HE, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- UK Dementia Research Institute, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
10
|
Zhang M, Liu Y, Liu M, Liu B, Li N, Dong X, Hong Z, Chai Y. UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer's disease cell model induced by Aβ 1-42. Metabolomics 2019; 15:13. [PMID: 30830431 DOI: 10.1007/s11306-019-1473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disorder with neither definitive pathogenesis nor effective therapy so far. Danshen, the dried root and rhizome of Salvia miltiorrhiza Bunge, is used extensively in Alzheimer's disease treatment to ameliorate the symptoms, but the underlying mechanism remains to be clarified. OBJECTIVES To investigate potential biomarkers for AD and elucidate the protective mechanism of Danshen on AD cell model. METHODS An ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF/MS)-based approach combined with partial least squares discriminant analysis (PLS-DA) has been developed to discriminate the metabolic modifications between human brain microvascular endothelial cell (hBMEC) and AD cell model induced by amyloid-β protein (Aβ1-42). To further elucidate the pathophysiology of AD, related metabolic pathways have been studied. RESULTS Thirty-three distinct potential biomarkers were screened out and considered as potential biomarkers corresponding to AD, which were mostly improved and partially restored back to normalcy in Danshen pre-protection group. It was found that AD was closely related to disturbed arginine and proline metabolism, glutathione metabolism, alanine aspartate and glutamate metabolism, histidine metabolism, pantothenate and CoA biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis, citrate cycle and glycerophospholipid metabolism, and the protective mechanism of Danshen in AD cell model may be related to partially regulating the perturbed pathways. CONCLUSIONS These outcomes provide valuable evidences for therapeutic mechanism investigation of Danshen in AD treatment, and such an approach could be transferred to unravel the mechanism of other traditional Chinese medicine (TCM) and diseases.
Collapse
Affiliation(s)
- Mingyong Zhang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Min Liu
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Biying Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Na Li
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
11
|
Gouwens LK, Ismail MS, Rogers VA, Zeller NT, Garrad EC, Amtashar FS, Makoni NJ, Osborn DC, Nichols MR. Aβ42 Protofibrils Interact with and Are Trafficked through Microglial-Derived Microvesicles. ACS Chem Neurosci 2018. [PMID: 29543435 DOI: 10.1021/acschemneuro.8b00029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microvesicles (MVs) and exosomes comprise a class of cell-secreted particles termed extracellular vesicles (EVs). These cargo-holding vesicles mediate cell-to-cell communication and have recently been implicated in neurodegenerative diseases such as Alzheimer's disease (AD). The two types of EVs are distinguished by the mechanism of cell release and their size, with the smaller exosomes and the larger MVs ranging from 30 to 100 nm and 100 nm to 1 μm in diameter, respectively. MV numbers are increased in AD and appear to interact with amyloid-β peptide (Aβ), the primary protein component of the neuritic plaques in the AD brain. Because microglial cells play such an important role in AD-linked neuroinflammation, we sought to characterize MVs shed from microglial cells, better understand MV interactions with Aβ, and determine whether internalized Aβ may be incorporated into secreted MVs. Multiple strategies were used to characterize MVs shed from BV-2 microglia after ATP stimulation. Confocal images of isolated MVs bound to fluorescently labeled annexin-V via externalized phosphatidylserine revealed a polydisperse population of small spherical structures. Dynamic light scattering measurements yielded MV diameters ranging from 150 to 600 nm. Electron microscopy of resin-embedded MVs cut into thin slices showed well-defined uranyl acetate-stained ring-like structures in a similar diameter range. The use of a fluorescently labeled membrane insertion probe, NBD C6-HPC, effectively tracked MVs in binding experiments, and an Aβ ELISA confirmed a strong interaction between MVs and Aβ protofibrils but not Aβ monomers. Despite the lesser monomer interaction, MVs had an inhibitory effect on monomer aggregation. Primary microglia rapidly internalized Aβ protofibrils, and subsequent stimulation of the microglia with ATP resulted in the release of MVs containing the internalized Aβ protofibrils. The role of MVs in neurodegeneration and inflammation is an emerging area, and further knowledge of MV interaction with Aβ may shed light on extracellular spread and influence on neurotoxicity and neuroinflammation.
Collapse
Affiliation(s)
- Lisa K. Gouwens
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Mudar S. Ismail
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Victoria A. Rogers
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Nathan T. Zeller
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Evan C. Garrad
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Fatima S. Amtashar
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Nyasha J. Makoni
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - David C. Osborn
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| | - Michael R. Nichols
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, St. Louis, Missouri 63121, United States
| |
Collapse
|
12
|
Ahlemeyer B, Halupczok S, Rodenberg-Frank E, Valerius KP, Baumgart-Vogt E. Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation. J Alzheimers Dis 2018; 61:1425-1450. [DOI: 10.3233/jad-170923] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Sascha Halupczok
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Elke Rodenberg-Frank
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Klaus-Peter Valerius
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
13
|
Colvin BA, Rogers VA, Kulas JA, Ridgway EA, Amtashar FS, Combs CK, Nichols MR. The conformational epitope for a new Aβ42 protofibril-selective antibody partially overlaps with the peptide N-terminal region. J Neurochem 2017; 143:736-749. [PMID: 28881033 DOI: 10.1111/jnc.14211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023]
Abstract
Aggregation and accumulation of amyloid-β peptide (Aβ) is a key component of Alzheimer's disease (AD). While monomeric Aβ appears to be benign, oligomers adopt a biologically detrimental structure. These soluble structures can be detected in AD brain tissue by antibodies that demonstrate selectivity for aggregated Aβ. Protofibrils are a subset of soluble oligomeric Aβ species and are described as small (< 100 nm) curvilinear assemblies enriched in β-sheet structure. Our own in vitro studies demonstrate that microglial cells are much more sensitive to soluble Aβ42 protofibrils compared to Aβ42 monomer or insoluble Aβ42 fibrils. Protofibrils interact with microglia, trigger Toll-like receptor signaling, elicit cytokine transcription and expression, and are rapidly taken up by the cells. Because of the importance of this Aβ species, we sought to develop an antibody that selectively recognizes protofibrils over other Aβ species. Immunization of rabbits with isolated Aβ42 protofibrils generated a high-titer anti serum with a strong affinity for Aβ42 protofibrils. The antiserum, termed AbSL, was selective for Aβ42 protofibrils over Aβ42 monomers and Aβ42 fibrils. AbSL did not react with amyloid precursor protein and recognized distinct pathological features in AD transgenic mouse brain slices. Competition studies with an Aβ antibody that targets residues 1-16 indicated that the conformational epitope for AbSL involved the N-terminal region of protofibrils in some manner. The newly developed antibody may have potential diagnostic and therapeutic uses in AD tissue and patients, and targeting of protofibrils in AD may have beneficial effects. Read the Editorial Highlight for this article on page 621. Cover Image for this issue: doi. 10.1111/jnc.13827.
Collapse
Affiliation(s)
- Benjamin A Colvin
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Victoria A Rogers
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Joshua A Kulas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Elizabeth A Ridgway
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Fatima S Amtashar
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Michael R Nichols
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Colvin BA, Rogers VA, Kulas JA, Ridgway EA, Amtashar FS, Combs CK, Nichols MR. The conformational epitope for a new Aβ42 protofibril-selective antibody partially overlaps with the peptide N-terminal region. J Neurochem 2017. [PMID: 28881033 DOI: 10.1111/jnc.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aggregation and accumulation of amyloid-β peptide (Aβ) is a key component of Alzheimer's disease (AD). While monomeric Aβ appears to be benign, oligomers adopt a biologically detrimental structure. These soluble structures can be detected in AD brain tissue by antibodies that demonstrate selectivity for aggregated Aβ. Protofibrils are a subset of soluble oligomeric Aβ species and are described as small (< 100 nm) curvilinear assemblies enriched in β-sheet structure. Our own in vitro studies demonstrate that microglial cells are much more sensitive to soluble Aβ42 protofibrils compared to Aβ42 monomer or insoluble Aβ42 fibrils. Protofibrils interact with microglia, trigger Toll-like receptor signaling, elicit cytokine transcription and expression, and are rapidly taken up by the cells. Because of the importance of this Aβ species, we sought to develop an antibody that selectively recognizes protofibrils over other Aβ species. Immunization of rabbits with isolated Aβ42 protofibrils generated a high-titer anti serum with a strong affinity for Aβ42 protofibrils. The antiserum, termed AbSL, was selective for Aβ42 protofibrils over Aβ42 monomers and Aβ42 fibrils. AbSL did not react with amyloid precursor protein and recognized distinct pathological features in AD transgenic mouse brain slices. Competition studies with an Aβ antibody that targets residues 1-16 indicated that the conformational epitope for AbSL involved the N-terminal region of protofibrils in some manner. The newly developed antibody may have potential diagnostic and therapeutic uses in AD tissue and patients, and targeting of protofibrils in AD may have beneficial effects. Read the Editorial Highlight for this article on page 621. Cover Image for this issue: doi. 10.1111/jnc.13827.
Collapse
Affiliation(s)
- Benjamin A Colvin
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Victoria A Rogers
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Joshua A Kulas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Elizabeth A Ridgway
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Fatima S Amtashar
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Michael R Nichols
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Toombs J, Foiani MS, Paterson RW, Heslegrave A, Wray S, Schott JM, Fox NC, Lunn MP, Blennow K, Zetterberg H. Effect of Spinal Manometers on Cerebrospinal Fluid Amyloid-β Concentration. J Alzheimers Dis 2017; 56:885-891. [PMID: 28059797 DOI: 10.3233/jad-161126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of spinal manometers on cerebrospinal fluid (CSF) amyloid-β (Aβ) concentration was investigated. Pooled human CSF samples were divided in two, one half passed through a manometer into a collection tube, the other transferred directly to a collection tube. CSF was analyzed for Aβ38/40/42 using an electrochemiluminescence immunoassay. Relative to control, use of a manometer decreased Aβ38/40/42 concentration by 5.6% (±1.5SE), 4.4% (±1.7SE), and 4.3% (±2.4SE), respectively. The ratios of Aβ42 :40, Aβ42 :38, and Aβ40 :38 were not affected by manometer treatment. Factors which artificially lower CSF Aβ concentrations are relevant to clinical diagnosis for AD and study design.
Collapse
Affiliation(s)
- Jamie Toombs
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Martha S Foiani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Ross W Paterson
- Department of Neurodegeneration, Dementia Research Centre, Institute of Neurology, London, UK
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Selina Wray
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Jonathan M Schott
- Department of Neurodegeneration, Dementia Research Centre, Institute of Neurology, London, UK
| | - Nick C Fox
- Department of Neurodegeneration, Dementia Research Centre, Institute of Neurology, London, UK
| | - Michael P Lunn
- Department of Neuroimmunology, Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|