1
|
Yamamoto M, Kumasaka T. Macromolecular crystallography at SPring-8 and SACLA. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:304-314. [PMID: 39964789 DOI: 10.1107/s1600577525000657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Since the groundbreaking determination of the first protein crystal structure by J. C. Kendrew in 1959, macromolecular crystallography (MX) has remained at the forefront of structural biology, driven by continuous technological advancements. The advent of synchrotron radiation in the 1990s revolutionized the field, enhancing data quality, introducing novel phasing methods, and broadening the scope of target samples to include membrane proteins and supramolecular complexes. In 1997, Japan inaugurated SPring-8, one of the world's largest third-generation synchrotron radiation facilities. With its high-brilliance radiation from insertion devices, SPring-8 has dramatically increased the capability of MX. This paper describes MX's evolution, current developments, and prospects at SPring-8 and SACLA.
Collapse
Affiliation(s)
- Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
2
|
Jiang Z, Jiang H, He Y, He Y, Liang D, Yu H, Li A, Signorato R. Development and testing of a dual-frequency real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:100-108. [PMID: 39642103 PMCID: PMC11708843 DOI: 10.1107/s1600577524010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/18/2024] [Indexed: 12/08/2024]
Abstract
A novel dual-frequency real-time feedback system has been developed to simultaneously optimize and stabilize beam position and energy at the hard X-ray nanoprobe beamline of the Shanghai Synchrotron Radiation Facility. A user-selected cut-off frequency is used to separate the beam position signal obtained from an X-ray beam position monitor into two parts, i.e. high-frequency and low-frequency components. They can be real-time corrected and optimized by two different optical components, one chromatic and the other achromatic, of very different inertial mass, such as Bragg monochromator dispersive elements and a pre-focusing total external reflection mirror. The experimental results shown in this article demonstrate a significant improvement in position and energy stabilities. The long-term beam angular stability clearly improved from 2.21 to 0.92 µrad RMS in the horizontal direction and from 0.72 to 0.10 µrad RMS in the vertical direction.
Collapse
Affiliation(s)
- Zhisen Jiang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Hui Jiang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jialuo Road, Jiading DistrictShanghai201800People’s Republic of China
| | - Yinghua He
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Yan He
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Dongxu Liang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Huaina Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Aiguo Li
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jialuo Road, Jiading DistrictShanghai201800People’s Republic of China
| | | |
Collapse
|
3
|
Martin MP, Noble MEM. Exiting the tunnel of uncertainty: crystal soak to validated hit. Acta Crystallogr D Struct Biol 2022; 78:1294-1302. [PMID: 36322414 PMCID: PMC9629488 DOI: 10.1107/s2059798322009986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Crystallographic fragment screens provide an efficient and effective way to identify small-molecule ligands of a crystallized protein. Due to their low molecular weight, such hits tend to have low, often unquantifiable, affinity for their target, complicating the twin challenges of validating the hits as authentic solution-phase ligands of the target and identifying the `best' hit(s) for further elaboration. In this article, approaches that address these challenges are assessed. Using retrospective analysis of a recent ATAD2 hit-identification campaign, alongside other examples of successful fragment-screening campaigns, it is suggested that hit validation and prioritization are best achieved by a `triangulation' approach in which the results of multiple available biochemical and biophysical techniques are correlated to develop qualitative structure-activity relationships (SARs). Such qualitative SARs may indeed be the only means by which to navigate a project through the tunnel of uncertainty that prevails before on-scale biophysical, biochemical and/or biological measurements become possible.
Collapse
Affiliation(s)
- Mathew P. Martin
- Cancer Research UK Drug Discovery Unit, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Martin E. M. Noble
- Cancer Research UK Drug Discovery Unit, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
4
|
A spatial beam property analyzer based on dispersive crystal diffraction for low-emittance X-ray light sources. Sci Rep 2022; 12:18267. [PMID: 36309543 DOI: 10.1038/s41598-022-23004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
The advent of low-emittance synchrotron X-ray sources and free-electron lasers urges the development of novel diagnostic techniques for measuring and monitoring the spatial source properties, especially the source sizes. This work introduces an X-ray beam property analyzer based on a multi-crystal diffraction geometry, including a crystal-based monochromator and a Laue crystal in a dispersive setting to the monochromator. By measuring the flat beam and the transmitted beam profiles, the system can provide a simultaneous high-sensitivity characterization of the source size, divergence, position, and angle in the diffraction plane of the multi-crystal system. Detailed theoretical modeling predicts the system's feasibility as a versatile characterization tool for monitoring the X-ray source and beam properties. The experimental validation was conducted at a bending magnet beamline at the Swiss Light Source by varying the machine parameters. A measurement sensitivity of less than 10% of a source size of around 12 µm is demonstrated. The proposed system offers a compact setup with simple X-ray optics and can also be utilized for monitoring the electron source.
Collapse
|
5
|
Okumura H, Sakai N, Murakami H, Mizuno N, Nakamura Y, Ueno G, Masunaga T, Kawamura T, Baba S, Hasegawa K, Yamamoto M, Kumasaka T. In situ crystal data-collection and ligand-screening system at SPring-8. Acta Crystallogr F Struct Biol Commun 2022; 78:241-251. [PMID: 35647681 PMCID: PMC9158660 DOI: 10.1107/s2053230x22005283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
An in situ X-ray diffraction measurement system using a crystallization plate has been constructed at the SPring-8 protein crystallography beamline. Utilizing small-wedge measurements and incorporating a liquid dispenser to prepare protein–ligand complex crystals, this system will make ligand screening possible. In situ diffraction data collection using crystallization plates has been utilized for macromolecules to evaluate crystal quality without requiring additional sample treatment such as cryocooling. Although it is difficult to collect complete data sets using this technique due to the mechanical limitation of crystal rotation, recent advances in methods for data collection from multiple crystals have overcome this issue. At SPring-8, an in situ diffraction measurement system was constructed consisting of a goniometer for a plate, an articulated robot and plate storage. Using this system, complete data sets were obtained utilizing the small-wedge measurement method. Combining this system with an acoustic liquid handler to prepare protein–ligand complex crystals by applying fragment compounds to trypsin crystals for in situ soaking, binding was confirmed for seven out of eight compounds. These results show that the system functioned properly to collect complete data for structural analysis and to expand the capability for ligand screening in combination with a liquid dispenser.
Collapse
|
6
|
Pearce NM, Skyner R, Krojer T. Experiences From Developing Software for Large X-Ray Crystallography-Driven Protein-Ligand Studies. Front Mol Biosci 2022; 9:861491. [PMID: 35480897 PMCID: PMC9035521 DOI: 10.3389/fmolb.2022.861491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The throughput of macromolecular X-ray crystallography experiments has surged over the last decade. This remarkable gain in efficiency has been facilitated by increases in the availability of high-intensity X-ray beams, (ultra)fast detectors and high degrees of automation. These developments have in turn spurred the development of several dedicated centers for crystal-based fragment screening which enable the preparation and collection of hundreds of single-crystal diffraction datasets per day. Crystal structures of target proteins in complex with small-molecule ligands are of immense importance for structure-based drug design (SBDD) and their rapid turnover is a prerequisite for accelerated development cycles. While the experimental part of the process is well defined and has by now been established at several synchrotron sites, it is noticeable that software and algorithmic aspects have received far less attention, as well as the implications of new methodologies on established paradigms for structure determination, analysis, and visualization. We will review three key areas of development of large-scale protein-ligand studies. First, we will look into new software developments for batch data processing, followed by a discussion of the methodological changes in the analysis, modeling, refinement and deposition of structures for SBDD, and the changes in mindset that these new methods require, both on the side of depositors and users of macromolecular models. Finally, we will highlight key new developments for the presentation and analysis of the collections of structures that these experiments produce, and provide an outlook for future developments.
Collapse
Affiliation(s)
- Nicholas M. Pearce
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, Netherlands
| | - Rachael Skyner
- OMass Therapeutics, The Oxford Science Park, Oxford, United Kingdom
| | | |
Collapse
|
7
|
Zeng C, Chen Z, Yang H, Fan Y, Fei L, Chen X, Zhang M. Advanced high resolution three-dimensional imaging to visualize the cerebral neurovascular network in stroke. Int J Biol Sci 2022; 18:552-571. [PMID: 35002509 PMCID: PMC8741851 DOI: 10.7150/ijbs.64373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/05/2022] Open
Abstract
As an important method to accurately and timely diagnose stroke and study physiological characteristics and pathological mechanism in it, imaging technology has gone through more than a century of iteration. The interaction of cells densely packed in the brain is three-dimensional (3D), but the flat images brought by traditional visualization methods show only a few cells and ignore connections outside the slices. The increased resolution allows for a more microscopic and underlying view. Today's intuitive 3D imagings of micron or even nanometer scale are showing its essentiality in stroke. In recent years, 3D imaging technology has gained rapid development. With the overhaul of imaging mediums and the innovation of imaging mode, the resolution has been significantly improved, endowing researchers with the capability of holistic observation of a large volume, real-time monitoring of tiny voxels, and quantitative measurement of spatial parameters. In this review, we will summarize the current methods of high-resolution 3D imaging applied in stroke.
Collapse
Affiliation(s)
- Chudai Zeng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Lujing Fei
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Xinghang Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China, 410008.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China, 410008
| |
Collapse
|
8
|
Chen M, Gao L, Sheng W, Wang S, Yang F. Numerical iteration method to reduce the surface shape error of a bendable mirror in synchrotron radiation. APPLIED OPTICS 2022; 61:2096-2102. [PMID: 35297901 DOI: 10.1364/ao.451088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
X-ray mirrors with high focusing performance are extensively used in the synchrotron radiation field. Especially for vertical reflecting bendable mirrors, many elements such as gravity, extended parts used for the bending mechanism, etc., usually affect the surface shape precision. There are no effective methods to remove all these errors at this point. However, an iteration method can be adopted to solve this problem. In this paper, a novel, to the best of our knowledge, iteration method on decreasing the error between the practice surface shape and the desired one is proposed. Not only can the precision of the surface shape be realized by this method, but also computational efficiency. Errors induced by gravity can be compensated for by an analytical method, while errors caused by the extended parts should be eliminated by a numerical method. Therefore, two main kinds of errors-gravity and parts of clamping-can be removed by iteration. Some examples are presented to illustrate the advantages of this method by comparison with the regular one.
Collapse
|
9
|
Stepanov S, Kissick D, Makarov O, Hilgart M, Becker M, Venugopalan N, Xu S, Smith JL, Fischetti RF. Fast automated energy changes at synchrotron radiation beamlines equipped with transfocator or focusing mirrors. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:393-399. [PMID: 35254302 PMCID: PMC8900858 DOI: 10.1107/s1600577522001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Algorithms and procedures to fully automate retuning of synchrotron radiation beamlines over wide energy ranges are discussed. The discussion is based on the implementation at the National Institute of General Medical Sciences and the National Cancer Institute Structural Biology Facility at the Advanced Photon Source. When a user selects a new beamline energy, software synchronously controls the beamline monochromator and undulator to maintain the X-ray beam flux after the monochromator, preserves beam attenuation by determining a new set of attenuator foils, changes, as needed, mirror reflecting stripes and the undulator harmonic, preserves beam focal distance of compound refractive lens focusing by changing the In/Out combination of lenses in the transfocator, and, finally, restores beam position at the sample by on-the-fly scanning of either the Kirkpatrick-Baez mirror angles or the transfocator up/down and inboard/outboard positions. The sample is protected from radiation damage by automatically moving it out of the beam during the energy change and optimization.
Collapse
Affiliation(s)
- Sergey Stepanov
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - David Kissick
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Oleg Makarov
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Mark Hilgart
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Michael Becker
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Nagarajan Venugopalan
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Shenglan Xu
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Robert F. Fischetti
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Bldg. 436D, Argonne, IL 60439, USA
| |
Collapse
|
10
|
Storm SLS, Axford D, Owen RL. Experimental evidence for the benefits of higher X-ray energies for macromolecular crystallography. IUCRJ 2021; 8:896-904. [PMID: 34804543 PMCID: PMC8562668 DOI: 10.1107/s2052252521008423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
X-ray-induced radiation damage is a limiting factor for the macromolecular crystallographer and data must often be merged from many crystals to yield complete data sets for the structure solution of challenging samples. Increasing the X-ray energy beyond the typical 10-15 keV range promises to provide an extension of crystal lifetime via an increase in diffraction efficiency. To date, however, hardware limitations have negated any possible gains. Through the first use of a cadmium telluride EIGER2 detector and a beamline optimized for high-energy data collection, it is shown that at higher energies fewer crystals will be required to obtain complete data, as the diffracted intensity per unit dose increases by a factor of more than two between 12.4 and 25 keV. Additionally, these higher energy data can provide more information, as shown by a systematic increase in the high-resolution cutoff of the data collected. Taken together, these gains point to a high-energy future for synchrotron-based macromolecular crystallography.
Collapse
Affiliation(s)
- Selina L. S. Storm
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
11
|
Schneider DK, Shi W, Andi B, Jakoncic J, Gao Y, Bhogadi DK, Myers SF, Martins B, Skinner JM, Aishima J, Qian K, Bernstein HJ, Lazo EO, Langdon T, Lara J, Shea-McCarthy G, Idir M, Huang L, Chubar O, Sweet RM, Berman LE, McSweeney S, Fuchs MR. FMX - the Frontier Microfocusing Macromolecular Crystallography Beamline at the National Synchrotron Light Source II. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:650-665. [PMID: 33650577 PMCID: PMC7941291 DOI: 10.1107/s1600577520016173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Two new macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source II, FMX and AMX, opened for general user operation in February 2017 [Schneider et al. (2013). J. Phys. Conf. Ser. 425, 012003; Fuchs et al. (2014). J. Phys. Conf. Ser. 493, 012021; Fuchs et al. (2016). AIP Conf. Proc. SRI2015, 1741, 030006]. FMX, the micro-focusing Frontier MX beamline in sector 17-ID-2 at NSLS-II, covers a 5-30 keV photon energy range and delivers a flux of 4.0 × 1012 photons s-1 at 1 Å into a 1 µm × 1.5 µm to 10 µm × 10 µm (V × H) variable focus, expected to reach 5 × 1012 photons s-1 at final storage-ring current. This flux density surpasses most MX beamlines by nearly two orders of magnitude. The high brightness and microbeam capability of FMX are focused on solving difficult crystallographic challenges. The beamline's flexible design supports a wide range of structure determination methods - serial crystallography on micrometre-sized crystals, raster optimization of diffraction from inhomogeneous crystals, high-resolution data collection from large-unit-cell crystals, room-temperature data collection for crystals that are difficult to freeze and for studying conformational dynamics, and fully automated data collection for sample-screening and ligand-binding studies. FMX's high dose rate reduces data collection times for applications like serial crystallography to minutes rather than hours. With associated sample lifetimes as short as a few milliseconds, new rapid sample-delivery methods have been implemented, such as an ultra-high-speed high-precision piezo scanner goniometer [Gao et al. (2018). J. Synchrotron Rad. 25, 1362-1370], new microcrystal-optimized micromesh well sample holders [Guo et al. (2018). IUCrJ, 5, 238-246] and highly viscous media injectors [Weierstall et al. (2014). Nat. Commun. 5, 3309]. The new beamline pushes the frontier of synchrotron crystallography and enables users to determine structures from difficult-to-crystallize targets like membrane proteins, using previously intractable crystals of a few micrometres in size, and to obtain quality structures from irregular larger crystals.
Collapse
Affiliation(s)
| | - Wuxian Shi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jean Jakoncic
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yuan Gao
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Stuart F. Myers
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Bruno Martins
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
| | - John M. Skinner
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Aishima
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kun Qian
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Herbert J. Bernstein
- Ronin Institute for Independent Scholarship, c/o NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Edwin O. Lazo
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Thomas Langdon
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - John Lara
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Mourad Idir
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lei Huang
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Oleg Chubar
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Robert M. Sweet
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lonny E. Berman
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
12
|
Barthel T, Huschmann FU, Wallacher D, Feiler CG, Klebe G, Weiss MS, Wollenhaupt J. Facilitated crystal handling using a simple device for evaporation reduction in microtiter plates. J Appl Crystallogr 2021; 54:376-382. [PMID: 33833659 PMCID: PMC7941301 DOI: 10.1107/s1600576720016477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
In the past two decades, most of the steps in a macromolecular crystallography experiment have undergone tremendous development with respect to speed, feasibility and increase of throughput. The part of the experimental workflow that is still a bottleneck, despite significant efforts, involves the manipulation and harvesting of the crystals for the diffraction experiment. Here, a novel low-cost device is presented that functions as a cover for 96-well crystallization plates. This device enables access to the individual experiments one at a time by its movable parts, while minimizing evaporation of all other experiments of the plate. In initial tests, drops of many typically used crystallization cocktails could be successfully protected for up to 6 h. Therefore, the manipulation and harvesting of crystals is straightforward for the experimenter, enabling significantly higher throughput. This is useful for many macromolecular crystallography experiments, especially multi-crystal screening campaigns.
Collapse
Affiliation(s)
- Tatjana Barthel
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Structural Biochemistry Group, Takustraße 5, 14195 Berlin, Germany
| | - Franziska U. Huschmann
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Philipps-Universität Marburg, Institute of Pharmaceutical Chemistry, Drug Design Group, Marbacher Weg 6, 35032 Marburg, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin, Department Sample Environment, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christian G. Feiler
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Gerhard Klebe
- Philipps-Universität Marburg, Institute of Pharmaceutical Chemistry, Drug Design Group, Marbacher Weg 6, 35032 Marburg, Germany
| | - Manfred S. Weiss
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Jan Wollenhaupt
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| |
Collapse
|
13
|
Daniel E, Maksimainen MM, Smith N, Ratas V, Biterova E, Murthy SN, Rahman MT, Kiema TR, Sridhar S, Cordara G, Dalwani S, Venkatesan R, Prilusky J, Dym O, Lehtiö L, Koski MK, Ashton AW, Sussman JL, Wierenga RK. IceBear: an intuitive and versatile web application for research-data tracking from crystallization experiment to PDB deposition. Acta Crystallogr D Struct Biol 2021; 77:151-163. [PMID: 33559605 PMCID: PMC7869904 DOI: 10.1107/s2059798320015223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
The web-based IceBear software is a versatile tool to monitor the results of crystallization experiments and is designed to facilitate supervisor and student communications. It also records and tracks all relevant information from crystallization setup to PDB deposition in protein crystallography projects. Fully automated data collection is now possible at several synchrotrons, which means that the number of samples tested at the synchrotron is currently increasing rapidly. Therefore, the protein crystallography research communities at the University of Oulu, Weizmann Institute of Science and Diamond Light Source have joined forces to automate the uploading of sample metadata to the synchrotron. In IceBear, each crystal selected for data collection is given a unique sample name and a crystal page is generated. Subsequently, the metadata required for data collection are uploaded directly to the ISPyB synchrotron database by a shipment module, and for each sample a link to the relevant ISPyB page is stored. IceBear allows notes to be made for each sample during cryocooling treatment and during data collection, as well as in later steps of the structure determination. Protocols are also available to aid the recycling of pins, pucks and dewars when the dewar returns from the synchrotron. The IceBear database is organized around projects, and project members can easily access the crystallization and diffraction metadata for each sample, as well as any additional information that has been provided via the notes. The crystal page for each sample connects the crystallization, diffraction and structural information by providing links to the IceBear drop-viewer page and to the ISPyB data-collection page, as well as to the structure deposited in the Protein Data Bank.
Collapse
Affiliation(s)
- Ed Daniel
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mirko M. Maksimainen
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Neil Smith
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Ville Ratas
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ekaterina Biterova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sudarshan N. Murthy
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M. Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Shruthi Sridhar
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gabriele Cordara
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Subhadra Dalwani
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Rajaram Venkatesan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jaime Prilusky
- Bioinformatics and Biological Computing Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Israel Structural Proteomics Center, Life Science Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lari Lehtiö
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Alun W. Ashton
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Joel L. Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rik K. Wierenga
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Krojer T, Fraser JS, von Delft F. Discovery of allosteric binding sites by crystallographic fragment screening. Curr Opin Struct Biol 2020; 65:209-216. [PMID: 33171388 PMCID: PMC10979522 DOI: 10.1016/j.sbi.2020.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023]
Abstract
Understanding allosteric regulation of proteins is fundamental to our study of protein structure and function. Moreover, allosteric binding pockets have become a major target of drug discovery efforts in recent years. However, even though the function of almost every protein can be influenced by allostery, it remains a challenge to discover, rationalise and validate putative allosteric binding pockets. This review examines how the discovery and analysis of putative allosteric binding sites have been influenced by the availability of centralised facilities for crystallographic fragment screening, along with newly developed computational methods for modelling low occupancy features. We discuss the experimental parameters required for success, and how new methods could influence the field in the future. Finally, we reflect on the general problem of how to translate these findings into actual ligand development programs.
Collapse
Affiliation(s)
- Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK; Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK; Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa.
| |
Collapse
|
15
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
16
|
Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:040901. [PMID: 32818147 PMCID: PMC7413746 DOI: 10.1063/4.0000024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/21/2020] [Indexed: 05/20/2023]
Abstract
X-ray free electron lasers (XFELs) now routinely produce millijoule level pulses of x-ray photons with tens of femtoseconds duration. Such x-ray intensities gave rise to the idea that weakly scattering particles-perhaps single biomolecules or viruses-could be investigated free of radiation damage. Here, we examine elements from the past decade of so-called single particle imaging with hard XFELs. We look at the progress made to date and identify some future possible directions for the field. In particular, we summarize the presently achieved resolutions as well as identifying the bottlenecks and enabling technologies to future resolution improvement, which in turn enables application to samples of scientific interest.
Collapse
Affiliation(s)
- Johan Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | | |
Collapse
|
17
|
First Experiments in Structural Biology at the European X-ray Free-Electron Laser. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ultrabright pulses produced in X-ray free-electron lasers (XFELs) offer new possibilities for industry and research, particularly for biochemistry and pharmaceuticals. The unprecedented brilliance of these next-generation sources enables structure determination from sub-micron crystals as well as radiation-sensitive proteins. The European X-Ray Free-Electron Laser (EuXFEL), with its first light in 2017, ushered in a new era for ultrabright X-ray sources by providing an unparalleled megahertz-pulse repetition rate, with orders of magnitude more pulses per second than previous XFEL sources. This rapid pulse frequency has significant implications for structure determination; not only will data collection be faster (resulting in more structures per unit time), but experiments requiring large quantities of data, such as time-resolved structures, become feasible in a reasonable amount of experimental time. Early experiments at the SPB/SFX instrument of the EuXFEL demonstrate how such closely-spaced pulses can be successfully implemented in otherwise challenging experiments, such as time-resolved studies.
Collapse
|
18
|
Fragments: where are we now? Biochem Soc Trans 2020; 48:271-280. [PMID: 31985743 DOI: 10.1042/bst20190694] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022]
Abstract
Fragment-based drug discovery (FBDD) has become a mainstream technology for the identification of chemical hit matter in drug discovery programs. To date, the food and drug administration has approved four drugs, and over forty compounds are in clinical studies that can trace their origins to a fragment-based screen. The challenges associated with implementing an FBDD approach are many and diverse, ranging from the library design to developing methods for identifying weak affinity compounds. In this article, we give an overview of current progress in fragment library design, fragment to lead optimisation and on the advancement in techniques used for screening. Finally, we will comment on the future opportunities and challenges in this field.
Collapse
|
19
|
Cao Y, Shen Z, Zheng Z. Method of calculating the aberrations of soft X-ray and vacuum ultraviolet optical systems. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1558-1564. [PMID: 31490144 DOI: 10.1107/s1600577519007823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Based on the the third-order aberration theory of plane-symmetric optical systems, this paper studies the effect on aberrations of the second-order accuracy of aperture-ray coordinates and the extrinsic aberrations of this kind of optical system; their calculation expressions are derived. The resultant aberration expressions are then applied to calculate the aberrations of two design examples of soft X-ray and vacuum ultraviolet (XUV) optical systems; images are compared with ray-tracing results using SHADOW software to validate the aberration expressions. The study shows that the accuracy of the aberration expressions is satisfactory.
Collapse
Affiliation(s)
- Yiqing Cao
- School of Mechanical and Electrical Engineering, Putian University, Putian, Fujian 351100, People's Republic of China
| | - Zhijuan Shen
- School of Mechanical and Electrical Engineering, Putian University, Putian, Fujian 351100, People's Republic of China
| | - Zhixia Zheng
- School of Mechanical and Electrical Engineering, Putian University, Putian, Fujian 351100, People's Republic of China
| |
Collapse
|
20
|
de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez-Millan P, Brillet K, Betat H, Mörl M, Roussel A, Girard E, Mueller-Dieckmann C, Fox GC, Olieric V, Gavira JA, Lorber B, Sauter C. A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCRJ 2019; 6:454-464. [PMID: 31098026 PMCID: PMC6503916 DOI: 10.1107/s2052252519003622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 05/15/2023]
Abstract
Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.
Collapse
Affiliation(s)
- Raphaël de Wijn
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Oliver Hennig
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Jennifer Roche
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | | | - Kevin Rollet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Pablo Fernandez-Millan
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Karl Brillet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | - Eric Girard
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Gavin C. Fox
- PROXIMA 2A beamline, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Vincent Olieric
- Paul Scherrer Institute, Swiss Light Source, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC–Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Bernard Lorber
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
21
|
Abstract
Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | | | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
22
|
Lanza A, Margheritis E, Mugnaioli E, Cappello V, Garau G, Gemmi M. Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCRJ 2019; 6:178-188. [PMID: 30867915 PMCID: PMC6400191 DOI: 10.1107/s2052252518017657] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 05/22/2023]
Abstract
Recent advances in 3D electron diffraction have allowed the structure determination of several model proteins from submicrometric crystals, the unit-cell parameters and structures of which could be immediately validated by known models previously obtained by X-ray crystallography. Here, the first new protein structure determined by 3D electron diffraction data is presented: a previously unobserved polymorph of hen egg-white lysozyme. This form, with unit-cell parameters a = 31.9, b = 54.4, c = 71.8 Å, β = 98.8°, grows as needle-shaped submicrometric crystals simply by vapor diffusion starting from previously reported crystallization conditions. Remarkably, the data were collected using a low-dose stepwise experimental setup consisting of a precession-assisted nanobeam of ∼150 nm, which has never previously been applied for solving protein structures. The crystal structure was additionally validated using X-ray synchrotron-radiation sources by both powder diffraction and single-crystal micro-diffraction. 3D electron diffraction can be used for the structural characterization of submicrometric macromolecular crystals and is able to identify novel protein polymorphs that are hardly visible in conventional X-ray diffraction experiments. Additionally, the analysis, which was performed on both nanocrystals and microcrystals from the same crystallization drop, suggests that an integrated view from 3D electron diffraction and X-ray microfocus diffraction can be applied to obtain insights into the molecular dynamics during protein crystal growth.
Collapse
Affiliation(s)
- Arianna Lanza
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Eleonora Margheritis
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Enrico Mugnaioli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gianpiero Garau
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Mauro Gemmi
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
23
|
Getting the Most Out of Your Crystals: Data Collection at the New High-Flux, Microfocus MX Beamlines at NSLS-II. Molecules 2019; 24:molecules24030496. [PMID: 30704096 PMCID: PMC6384729 DOI: 10.3390/molecules24030496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
Advances in synchrotron technology are changing the landscape of macromolecular crystallography. The two recently opened beamlines at NSLS-II-AMX and FMX-deliver high-flux microfocus beams that open new possibilities for crystallographic data collection. They are equipped with state-of-the-art experimental stations and automation to allow data collection on previously intractable crystals. Optimized data collection strategies allow users to tailor crystal positioning to optimally distribute the X-ray dose over its volume. Vector data collection allows the user to define a linear trajectory along a well diffracting volume of the crystal and perform rotational data collection while moving along the vector. This is particularly well suited to long, thin crystals. We describe vector data collection of three proteins-Akt1, PI3Kα, and CDP-Chase-to demonstrate its application and utility. For smaller crystals, we describe two methods for multicrystal data collection in a single loop, either manually selecting multiple centers (using H108A-PHM as an example), or "raster-collect", a more automated approach for a larger number of crystals (using CDP-Chase as an example).
Collapse
|
24
|
Nida S, Tsibizov A, Ziemann T, Woerle J, Moesch A, Schulze-Briese C, Pradervand C, Tudisco S, Sigg H, Bunk O, Grossner U, Camarda M. Silicon carbide X-ray beam position monitors for synchrotron applications. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:28-35. [PMID: 30655465 PMCID: PMC6337881 DOI: 10.1107/s1600577518014248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
In this work, the performance of thin silicon carbide membranes as material for radiation hard X-ray beam position monitors (XBPMs) is investigated. Thermal and electrical behavior of XBPMs made from thin silicon carbide membranes and single-crystal diamond is compared using finite-element simulations. Fabricated silicon carbide devices are also compared with a 12 µm commercial polycrystalline diamond XBPM at the Swiss Light Source at the Paul Scherrer Institute. Results show that silicon carbide devices can reach equivalent transparencies while showing improved linearity, dynamics and signal-to-noise ratio compared with commercial polycrystalline diamond XBPMs. Given the obtained results and availability of electronic-grade epitaxies on up to 6 inch wafers, it is expected that silicon carbide can substitute for diamond in most beam monitoring applications, whereas diamond, owing to its lower absorption, could remain the material of choice in cases of extreme X-ray power densities, such as pink and white beams.
Collapse
Affiliation(s)
- Selamnesh Nida
- Advanced Power Semiconductor Laboratory, ETH Zurich, Zurich, Switzerland
| | - Alexander Tsibizov
- Advanced Power Semiconductor Laboratory, ETH Zurich, Zurich, Switzerland
| | - Thomas Ziemann
- Advanced Power Semiconductor Laboratory, ETH Zurich, Zurich, Switzerland
| | - Judith Woerle
- Advanced Power Semiconductor Laboratory, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | | | - Hans Sigg
- Paul Scherrer Institute, Villigen, Switzerland
| | - Oliver Bunk
- Paul Scherrer Institute, Villigen, Switzerland
| | - Ulrike Grossner
- Advanced Power Semiconductor Laboratory, ETH Zurich, Zurich, Switzerland
| | - Massimo Camarda
- Advanced Power Semiconductor Laboratory, ETH Zurich, Zurich, Switzerland
- Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
25
|
Kim T, Ahn C, Lee O. Image segmentation by graph cut for radiation images of small animal blood vessels. Microsc Res Tech 2018; 81:1506-1512. [DOI: 10.1002/jemt.23154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/04/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Taewan Kim
- Department of Medical IT Engineering; College of Medical Sciences, Soonchunhyang University; Chungnam-do South Korea
| | - Chibum Ahn
- Department of Molecular Medicine; Gachon University; Incheon City South Korea
| | - Onseok Lee
- Department of Medical IT Engineering; College of Medical Sciences, Soonchunhyang University; Chungnam-do South Korea
| |
Collapse
|
26
|
Lebugle M, Dworkowski F, Pauluhn A, Guzenko VA, Romano L, Meier N, Marschall F, Sanchez DF, Grolimund D, Wang M, David C. High-intensity x-ray microbeam for macromolecular crystallography using silicon kinoform diffractive lenses. APPLIED OPTICS 2018; 57:9032-9039. [PMID: 30461891 DOI: 10.1364/ao.57.009032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Macromolecular crystallography often requires focused high-intensity x-ray beams for solving challenging protein structures from micrometer-sized crystals using current synchrotron radiation sources. The design of optical focusing schemes for hard x-rays showing high efficiency and flexibility in beam size is therefore continuously pursued. Here, we present an innovative solution based on a two-stage demagnification of the undulator source for photon energies from 6 keV to 19 keV, commissioned at the X10SA beamline of the Swiss Light Source, where a secondary source is imaged by two crossed silicon kinoform x-ray diffractive lenses with 75 nm outermost zone width. A source-size limited spot with a size of 4.8 μm×1.7 μm(h×v,FWHM) and flux of 7.5×1010 photons/s at 12.4 keV is demonstrated at the sample position.
Collapse
|
27
|
Hinck AP. Structure-guided engineering of TGF-βs for the development of novel inhibitors and probing mechanism. Bioorg Med Chem 2018; 26:5239-5246. [PMID: 30026042 DOI: 10.1016/j.bmc.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The increasing availability of detailed structural information on many biological systems provides an avenue for manipulation of these structures, either for probing mechanism or for developing novel therapeutic agents for treating disease. This has been accompanied by the advent of several powerful new methods, such as the ability to incorporate non-natural amino acids or perform fragment screening, increasing the capacity to leverage this new structural information to aid in these pursuits. The abundance of structural information also provides new opportunities for protein engineering, which may become more and more relevant as treatment of diseases using gene therapy approaches become increasingly common. This is illustrated by example with the TGF-β family of proteins, for which there is ample structural information, yet no approved inhibitors for treating diseases, such as cancer and fibrosis that are promoted by excessive TGF-β signaling. The results presented demonstrate that through several relatively simple modifications, primarily involving the removal of an α-helix and replacement of it with a flexible loop, it is possible to alter TGF-βs from being potent signaling proteins into inhibitors of TGF-β signaling. The engineered TGF-βs have improved specificity relative to kinase inhibitors and a much smaller size compared to monoclonal antibodies, and thus may prove successful as either as an injected therapeutic or as a gene therapy-based therapeutic, where other classes of inhibitors have failed.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
28
|
Yamashita K, Hirata K, Yamamoto M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr D Struct Biol 2018; 74:441-449. [PMID: 29717715 PMCID: PMC5930351 DOI: 10.1107/s2059798318004576] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023] Open
Abstract
In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals.
Collapse
|
29
|
Melnikov I, Svensson O, Bourenkov G, Leonard G, Popov A. The complex analysis of X-ray mesh scans for macromolecular crystallography. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:355-365. [PMID: 29652262 PMCID: PMC6343787 DOI: 10.1107/s2059798318002735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 12/05/2022]
Abstract
A method and software program, MeshBest, for the detection of individual crystals based on two-dimensional X-ray mesh scans are presented. In macromolecular crystallography, mesh (raster) scans are carried out either as part of X-ray-based crystal-centring routines or to identify positions on the sample holder from which diffraction images can be collected. Here, the methods used in MeshBest, software which automatically analyses diffraction images collected during a mesh scan and produces a two-dimensional crystal map showing estimates of the dimensions, centre positions and diffraction qualities of each crystal contained in the mesh area, are presented. Sample regions producing diffraction images resulting from the superposition of more than one crystal are also distinguished from regions with single-crystal diffraction. The applicability of the method is demonstrated using several cases.
Collapse
Affiliation(s)
- Igor Melnikov
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Olof Svensson
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gordon Leonard
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | - Alexander Popov
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| |
Collapse
|
30
|
Hettiarachchi GM, Donner E, Doelsch E. Application of Synchrotron Radiation-based Methods for Environmental Biogeochemistry: Introduction to the Special Section. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1139-1145. [PMID: 29293855 DOI: 10.2134/jeq2017.09.0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicable to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.
Collapse
|
31
|
Papp G, Rossi C, Janocha R, Sorez C, Lopez-Marrero M, Astruc A, McCarthy A, Belrhali H, Bowler MW, Cipriani F. Towards a compact and precise sample holder for macromolecular crystallography. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:829-840. [PMID: 28994412 PMCID: PMC5633908 DOI: 10.1107/s2059798317013742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Abstract
Most of the sample holders currently used in macromolecular crystallography offer limited storage density and poor initial crystal-positioning precision upon mounting on a goniometer. This has now become a limiting factor at high-throughput beamlines, where data collection can be performed in a matter of seconds. Furthermore, this lack of precision limits the potential benefits emerging from automated harvesting systems that could provide crystal-position information which would further enhance alignment at beamlines. This situation provided the motivation for the development of a compact and precise sample holder with corresponding pucks, handling tools and robotic transfer protocols. The development process included four main phases: design, prototype manufacture, testing with a robotic sample changer and validation under real conditions on a beamline. Two sample-holder designs are proposed: NewPin and miniSPINE. They share the same robot gripper and allow the storage of 36 sample holders in uni-puck footprint-style pucks, which represents 252 samples in a dry-shipping dewar commonly used in the field. The pucks are identified with human- and machine-readable codes, as well as with radio-frequency identification (RFID) tags. NewPin offers a crystal-repositioning precision of up to 10 µm but requires a specific goniometer socket. The storage density could reach 64 samples using a special puck designed for fully robotic handling. miniSPINE is less precise but uses a goniometer mount compatible with the current SPINE standard. miniSPINE is proposed for the first implementation of the new standard, since it is easier to integrate at beamlines. An upgraded version of the SPINE sample holder with a corresponding puck named SPINEplus is also proposed in order to offer a homogenous and interoperable system. The project involved several European synchrotrons and industrial companies in the fields of consumables and sample-changer robotics. Manual handling of miniSPINE was tested at different institutes using evaluation kits, and pilot beamlines are being equipped with compatible robotics for large-scale evaluation. A companion paper describes a new sample changer FlexED8 (Papp et al., 2017, Acta Cryst., D73, 841-851).
Collapse
Affiliation(s)
- Gergely Papp
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Christopher Rossi
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Robert Janocha
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Clement Sorez
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Marcos Lopez-Marrero
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Anthony Astruc
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Andrew McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Florent Cipriani
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| |
Collapse
|
32
|
Yamamoto M, Hirata K, Yamashita K, Hasegawa K, Ueno G, Ago H, Kumasaka T. Protein microcrystallography using synchrotron radiation. IUCRJ 2017; 4:529-539. [PMID: 28989710 PMCID: PMC5619846 DOI: 10.1107/s2052252517008193] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kunio Hirata
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keitaro Yamashita
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kazuya Hasegawa
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hideo Ago
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takashi Kumasaka
- Advanced Photon Technology Division, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
33
|
Wang Q, Yu F, Cui Y, Zhang K, Pan Q, Zhong C, Liu K, Zhou H, Sun B, He J. Mini-beam modes on standard MX beamline BL17U at SSRF. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:073301. [PMID: 28764542 DOI: 10.1063/1.4991682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The macromolecular crystallography beamlines at third-generation synchrotron facilities play a central role in solving macromolecular crystal structures and also in understanding the biological function at molecular levels. The MX beamline BL17U at Shanghai Synchrotron Radiation Facility is a typical standard MX beamline with a focused beam size (H × V) of FWHM around 80 μm × 45 μm. However the protein samples brought to the beamline are down to 5-10 m from the important and challenging science project now. These samples require smaller size beam. In order to achieve the mini-size beamline, two mini-beam modes have been developed on BL17U: the pinhole-based mini-beam and the focused mini-beam by compound refractive lens (CRL). Compared to the pinhole-based mode, three times increase in flux is obtained by the CRL mode at a similar beam size. The flux gain obtained by the CRL needs to be considered for data collection strategies. It takes few minutes to switch the beamline from the normal to CRL mini-beam mode.
Collapse
Affiliation(s)
- Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ying Cui
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Kunhao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qiangyan Pan
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Changyou Zhong
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ke Liu
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bo Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jianhua He
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| |
Collapse
|
34
|
Locating and Visualizing Crystals for X-Ray Diffraction Experiments. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1607:143-164. [PMID: 28573572 DOI: 10.1007/978-1-4939-7000-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Macromolecular crystallography has advanced from using macroscopic crystals, which might be >1 mm on a side, to crystals that are essentially invisible to the naked eye, or even under a standard laboratory microscope. As crystallography requires recognizing crystals when they are produced, and then placing them in an X-ray, electron, or neutron beam, this provides challenges, particularly in the case of advanced X-ray sources, where beams have very small cross sections and crystals may be vanishingly small. Methods for visualizing crystals are reviewed here, and examples of different types of cases are presented, including: standard crystals, crystals grown in mesophase, in situ crystallography, and crystals grown for X-ray Free Electron Laser or Micro Electron Diffraction experiments. As most techniques have limitations, it is desirable to have a range of complementary techniques available to identify and locate crystals. Ideally, a given technique should not cause sample damage, but sometimes it is necessary to use techniques where damage can only be minimized. For extreme circumstances, the act of probing location may be coincident with collecting X-ray diffraction data. Future challenges and directions are also discussed.
Collapse
|
35
|
Cao Y, Lu L. Aberrations of soft x-ray and vacuum ultraviolet optical systems with orthogonal arrangement of elements. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:299-307. [PMID: 28248372 DOI: 10.1364/josaa.34.000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The wave aberration of plane-symmetric optical systems is expressed with the aperture-ray coordinates on the reference exit wavefront in the paper; the defocus aberration caused by the meridional field of source is analyzed in detail. Based on the expressions of the wave aberration and the defocus, the aberrations of the soft x-ray and ultraviolet (XUV) optical systems with an orthogonal arrangement of elements are studied as a whole. The resultant aberration expressions are used to calculate the aberrations of two design examples; the images are compared to the ray-tracing results with Shadow to validate the aberration expressions. The study shows that the accuracy of the aberration expressions is satisfactory. The analytical analysis of aberrations is helpful in the design and optimization of the XUV optical systems with an orthogonal arrangement of elements.
Collapse
|