1
|
Younes AH, Mustafa YF. Sweet Bell Pepper: A Focus on Its Nutritional Qualities and Illness-Alleviated Properties. Indian J Clin Biochem 2024; 39:459-469. [PMID: 39346723 PMCID: PMC11436515 DOI: 10.1007/s12291-023-01165-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 10/01/2024]
Abstract
Sweet bell pepper (SBP, Capsicum annuum L.) can be employed as a spice in many dishes and may also be eaten as a delicious fruit. These two nutritional attributes are owing to the strong, deep taste of many SBP phytochemicals. This fruit has many additional beneficial properties because it contains high concentrations of minerals and vitamins that distinguish it from other kinds of fruits. Almost every part of the SBP is thought to be an excellent source of bioactive substances that are health supporters, such as flavonoids, polyphenols, and various aromatic substances. The ability of SBP-phytochemicals to work as antioxidants, reducing the harmful effects of oxidative stress and consequently preventing many chronic illnesses, is one of their main biomedical characteristics. These phytochemicals have good antibacterial properties, mostly against gram-positive pathogenic microbes, in addition to their anti-carcinogenic and cardio-preventive effects. So, this review aims to highlight the nutritional qualities of SBP-derived phytochemicals and their illness-alleviated characteristics. Antioxidant, anti-inflammatory, antitumor, antidiabetic, and analgesic properties are some of the ones discussed.
Collapse
Affiliation(s)
- Areej Hazem Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
2
|
Tang L, Li T, Xie J, Huo Y. Diversity and heterogeneity in human breast cancer adipose tissue revealed at single-nucleus resolution. Front Immunol 2023; 14:1158027. [PMID: 37153595 PMCID: PMC10160491 DOI: 10.3389/fimmu.2023.1158027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction There is increasing awareness of the role of adipose tissue in breast cancer occurrence and development, but no comparison of adipose adjacent to breast cancer tissues and adipose adjacent to normal breast tissues has been reported. Methods Single-nucleus RNA sequencing (snRNA-seq) was used to analyze cancer-adjacent and normal adipose tissues from the same breast cancer patient to characterize heterogeneity. SnRNA-seq was performed on 54513 cells from six samples of normal breast adipose tissue (N) distant from the tumor and tumor-adjacent adipose tissue (T) from the three patients (all surgically resected). Results and discussion Significant diversity was detected in cell subgroups, differentiation status and, gene expression profiles. Breast cancer induces inflammatory gene profiles in most adipose cell types, such as macrophages, endothelial cells, and adipocytes. Furthermore, breast cancer decreased lipid uptake and the lipolytic phenotype and caused a switch to lipid biosynthesis and an inflammatory state in adipocytes. The in vivo trajectory of adipogenesis revealed distinct transcriptional stages. Breast cancer induced reprogramming across many cell types in breast cancer adipose tissues. Cellular remodeling was investigated by alterations in cell proportions, transcriptional profiles and cell-cell interactions. Breast cancer biology and novel biomarkers and therapy targets may be exposed.
Collapse
Affiliation(s)
- Lina Tang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| | - Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning, China
| | - Jing Xie
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanping Huo
- Department of Breast Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Lina Tang, ; Yanping Huo,
| |
Collapse
|
3
|
Thongin S, Den-Udom T, Uppakara K, Sriwantana T, Sibmooh N, Laolob T, Boonthip C, Wichai U, Muta K, Ketsawatsomkron P. Beneficial effects of capsaicin and dihydrocapsaicin on endothelial inflammation, nitric oxide production and antioxidant activity. Biomed Pharmacother 2022; 154:113521. [PMID: 36007275 DOI: 10.1016/j.biopha.2022.113521] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Capsaicin and dihydrocapsaicin (DHC) are major pungent capsaicinoids produced in chili peppers. Capsaicin has been previously shown to promote vascular health by increasing nitric oxide (NO) production and reducing inflammatory responses. While capsaicin has been extensively studied, whether DHC exerts cardiovascular benefits through similar mechanisms remains unclear. The current study aimed to investigate the direct effects of DHC on endothelial inflammation, NO release, and free radical scavenging properties. DHC at concentrations up to 50 µM did not affect cell viability, while concentrations of 100 and 500 µM of DHC led to endothelial cytotoxicity. Capsaicin decreased cell viability at concentration of 500 µM. To investigate the effects of capsaicinoids on endothelial activation, we first demonstrated that TNFα induced Ser536 phosphorylation of p65 NFκB, expressions of adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1, and IL-6 production in primary human endothelial cells. These effects were robustly abrogated by DHC. Consistently, DHC treatment led to a marked reduction in TNFα-mediated monocyte adhesion to endothelial cells. Additionally, NO production was significantly induced by DHC and capsaicin compared to vehicle control. Similar to capsaicin and vitamin C, DHC scavenged DPPH (1,1-diphenyl-2-picrylhydrazyl) free radicals in vitro. Our present study highlights the benefits of DHC and capsaicin treatment on human endothelial cells and provides evidence to support cardiovascular benefits from capsicum consumption.
Collapse
Affiliation(s)
- Saowarose Thongin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Thittaya Den-Udom
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Kwanchanok Uppakara
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Thanaporn Sriwantana
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Thanet Laolob
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Thailand
| | - Chatchai Boonthip
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Thailand
| | - Uthai Wichai
- Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Thailand
| | - Kenjiro Muta
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand.
| |
Collapse
|
4
|
Song M, Wang Y, Zhou P, Wang J, Xu H, Zheng J. MicroRNA-361-5p Aggravates Acute Pancreatitis by Promoting Interleukin-17A Secretion via Impairment of Nuclear Factor IA-Dependent Hes1 Downregulation. J Med Chem 2021; 64:16541-16552. [PMID: 34738458 DOI: 10.1021/acs.jmedchem.1c01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study set out to explore the potential role of microRNA-361-5p (miR-361-5p) in acute pancreatitis through regulation of interleukin-17A (IL-17A). We first identified the expression of miR-361-5p, IL-17A, nuclear factor IA (NFIA), and hes family bHLH transcription factor 1 (Hes1) in serum samples collected from patients with acute pancreatitis, caerulein-induced mice, and a Th17 cell model. The predicted binding of miR-361-5p to NFIA was confirmed in vitro. Gain- and loss-of-function assays of miR-361-5p and NFIA were employed to elucidate their effects on acute pancreatitis. miR-361-5p promoted Th17 cells to secrete IL-17A and then aggravated acute pancreatitis. miR-361-5p directly targeted NFIA by binding to its promoter region, leading to its downregulation. Overexpression of NFIA reduced Hes1 expression and rescued the promoting effect of miR-361-5p on IL-17A secretion. In summary, miR-361-5p enhances IL-17A secretion from Th17 cells and thus aggravates acute pancreatitis by targeting NFIA and upregulating Hes1.
Collapse
Affiliation(s)
- Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China
| | - Yifan Wang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Ping Zhou
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China
| | - Jiandong Wang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Haidong Xu
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Jun Zheng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
5
|
Enayati A, Johnston TP, Sahebkar A. Anti-atherosclerotic Effects of Spice-Derived Phytochemicals. Curr Med Chem 2021; 28:1197-1223. [PMID: 32368966 DOI: 10.2174/0929867327666200505084620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the world. Atherosclerosis is characterized by oxidized lipid deposition and inflammation in the arterial wall and represents a significant problem in public health and medicine. Some dietary spices have been widely used in many countries; however, the mechanism of their action as it relates to the prevention and treatment of atherosclerosis is still poorly understood. In this review, we focus on the properties of various spice-derived active ingredients used in the prevention and treatment of atherosclerosis, as well as associated atherosclerotic risk factors. We provide a summary of the mechanisms of action, epidemiological analyses, and studies of various components of spice used in the clinic, animal models, and cell lines related to atherosclerosis. Most notably, we focused on mechanisms of action by which these spice-derived compounds elicit their lipid-lowering, anti-inflammatory, antioxidant, and immunomodulatory properties, as well as their involvement in selected biochemical and signal transduction pathways. It is suggested that future research should aim to design well-controlled clinical trials and more thoroughly investigate the role of spices and their active components in the prevention/treatment of atherosclerosis. Based on this literature review, it appears that spices and their active components are well tolerated and have few adverse side effects and, therefore, provide a promising adjunctive treatment strategy for patients with atherosclerosis.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
6
|
Shi S, Li C, Zhang Y, Deng C, Liu W, Du J, Li Q, Ji Y, Guo L, Liu L, Hu H, Liu Y, Cui H. Dihydrocapsaicin Inhibits Cell Proliferation and Metastasis in Melanoma via Down-regulating β-Catenin Pathway. Front Oncol 2021; 11:648052. [PMID: 33833997 PMCID: PMC8023049 DOI: 10.3389/fonc.2021.648052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dihydrocapsaicin (DHC) is one of the main components of capsaicinoids in Capsicum. It has been reported that DHC exerts anti-cancer effects on diverse malignant tumors, such as colorectal cancer, breast cancer, and glioma. However, studies focused on the effect of DHC upon melanoma have rarely been done. In the present study, melanoma A375 and MV3 cell lines were treated with DHC and the cell proliferation, migration, and invasion were significantly suppressed. Furthermore, DHC effectively inhibited xenograft tumor growth and pulmonary metastasis of melanoma cells in NOD/SCID mice model. It was identified that β-catenin, which plays significant roles in cell proliferation and epithelial-mesenchymal transition, was down-regulated after DHC treatment. In addition, cyclin D1, c-Myc, MMP2, and MMP7, which are critical in diverse cellular process regulation as downstream proteins of β-catenin, were all decreased. Mechanistically, DHC accelerates ubiquitination of β-catenin and up-regulates the beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) in melanoma cells. The DHC induced suppression of cell proliferation, migration, and invasion were partly rescued by exogenous β-catenin overexpression, both in vitro and in vivo. Taken together, DHC may serve as a candidate natural compound for human melanoma treatment through β-catenin pathway.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Department of Dermatology, Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yanli Zhang
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yacong Ji
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Leiyang Guo
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lichao Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huanrong Hu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaling Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Bao L, Chau CS, Lei Z, Hu H, Chan AG, Amber KT, Maienschein-Cline M, Tsoukas MM. Dysregulated microRNA expression in IL-4 transgenic mice, an animal model of atopic dermatitis. Arch Dermatol Res 2021; 313:837-846. [PMID: 33433718 DOI: 10.1007/s00403-020-02176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
IL-4 plays an important role in the pathogenesis of atopic dermatitis (AD). Previously we showed that the expression of genes in chemotaxis, angiogenesis, inflammation and barrier functions is dysregulated in IL-4 transgenic (Tg) mice, a well-characterized AD mouse model. In this study, we aim to study differential expression of microRNAs in IL-4 Tg mice. As compared with wild-type mice, we found that 10 and 79 microRNAs are dysregulated in the skin of IL-4 mice before and after the onset of skin lesions, respectively. Bioinformatic analysis and previous reports show that these dysregulated microRNAs may be involved in the NF-κB, TLRs, IL-4/IL-13, MAPK and other pathways. We also found that miR-139-5p and miR-196b-3p are significantly up-regulated in the peripheral blood of IL-4 Tg mice. Taken together, our data have identified many dysregulated microRNAs in IL-4 Tg mice, which may play important roles in AD pathogenesis and pathophysiology.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA.
| | - Cecilia S Chau
- Sequencing Core, Genome Research Division, Research Resources Center, Chicago, USA
| | - Zhengdeng Lei
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Hong Hu
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Angelina G Chan
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Kyle T Amber
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Genome Research Division, Research Resources Center, University of Illinois, Chicago, USA
| | - Maria M Tsoukas
- Department of Dermatology, UIC-Dermatology, RM 338, MC624, 808 S. Wood Street, Chicago, IL, 60612, USA
| |
Collapse
|
8
|
He JY, Li PH, Huang X, Sun YH, He XP, Huang W, Yu ZH, Sun HY. Molecular cloning, expression and functional analysis of NF-kB1 p105 from sea cucumber Holothuria leucospilota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103801. [PMID: 32739504 DOI: 10.1016/j.dci.2020.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The nuclear factor-κB (NF-κB) family is evolutionary conserved and plays key roles in the regulation of numerous basic cellular processes. In this study, a sea cucumber Holothuria leucospilota NF-κB1 p105 named HLp105 was first obtained. The full-length cDNA of HLp105 is 6564 bp long, with a 219 bp 5' untranslated region (UTR), a 2979 bp 3' UTR, and a 3366 bp open reading frame (ORF) encoding for 1121 amino acids with a deduced molecular weight of 123.92 kDa and an estimated pI of 5.31. HLp105 protein contains the conserved domain RHD, IPT, ANK and DEATH. HLp105 mRNA can be detected in all tissues examined, with the highest level in the intestine, followed by the transverse vessel, rete mirabile, coelomocytes, respiratory tree, bolishiti, cuvierian tubules, body wall, oesophagus and muscle. Challenged by LPS or poly (I:C), the transcription level of HLp105 was apparently up-regulated in the tissues examined. Besides, Over-expression of HLp105 in HEK293T cells, the apoptosis was inhibited, and the cytokines IL-1β and TNF-α were activated. The results are important for better understanding the function of NF-κB1 p105 in sea cucumber and reveal its involvement in immunoreaction.
Collapse
Affiliation(s)
- Jia-Yang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xi Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yue-Hong Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Peng He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Wei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zong-He Yu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
9
|
Geng F, Liu Z, Chen X, Chen H, Liu Y, Yang J, Zheng M, Yang L, Teng Y. High mobility group nucleosomal binding 2 reduces integrin α5/β1-mediated adhesion of Klebsiella pneumoniae on human pulmonary epithelial cells via nuclear factor I. Microbiol Immunol 2020; 64:825-834. [PMID: 33034909 DOI: 10.1111/1348-0421.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
It has been reported that high mobility group nucleosomal binding domain 2 (HMGN2) is a nucleus-related protein that regulates gene transcription and plays a critical role in bacterial clearance. An elevated level of HMGN2 reduced integrin α5/β1 expression of human pulmonary epithelial A549 cells was demonstrated during Klebsiella pneumoniae infection, thus weakening bacterial adhesion and invasion. However, the mechanism by which HMGN2 regulates integrin expression remains unclear. This study found that a transcription factor-nuclear factor I (NFI), which serves as the potential target of HMGN2 regulated integrin expression. The results showed that HMGN2 was able to promote NFIA and NFIB expression by increasing H3K27 acetylation of NFIA/B promoter regions. The integrin α5/β1 expression was significantly enhanced by knockdown of NFIA/B via a siRNA approach. Meanwhile, NFIA/B silence could also compromise the inhibition effect of HMGN2 on the integrin α5/β1 expression. Mechanistically, it was demonstrated that HMGN2 facilitated the recruitment of NFI on the promoter regions of integrin α5/β1 according to the chromatin immunoprecipitation assay. In addition, it was further demonstrated that the knockdown of NFIA/B induced more adhesion of Klebsiella pneumoniae on pulmonary epithelial A549 cells, which could be reversed by the application of an integrin inhibitor RGD. The results revealed a regulatory role of HMGN2 on the transcription level of integrin α5/β1, indicating a potential treatment strategy against Klebsiella pneumoniae-induced infectious lung diseases.
Collapse
Affiliation(s)
- Fan Geng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Huan Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jing Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Min Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
10
|
Chen L, Hu L, Zhu X, Wang Y, Li Q, Ma J, Li H. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis. Cell Cycle 2020; 19:2472-2485. [PMID: 32840181 DOI: 10.1080/15384101.2020.1807094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MALAT1 is associated with dendritic cells (DCs) maturation in Atherosclerosis (AS). This article aims to demystify the role of MALAT1 in AS. We separated immature DCs (iDCs) from healthy volunteers or ApoE-/- mice. And iDCs were treated with oxidized low density lipoprotein (ox-LDL) to induce DCs maturation. We found that ox-LDL promoted the levels of DCs maturation markers including CD83, CD86, IL-12 and IL-6. MALAT1 and NFIA were down-regulated, whereas miR-155-5p was up-regulated in the ox-LDL-treated iDCs. Furthermore, DCs maturation was notably suppressed by MALAT1 overexpression, NFIA overexpression or miR-155-5p knockdown. Moreover, MALAT1 functioned as a competing endogenous RNA to repress miR-155-5p, which controlled its down-stream target, NFIA. In addition, MALAT1 overexpression inhibited ox-LDL-stimulated DCs maturation by regulating miR-155-5p/NFIA axis. In AS mice, MALAT1 overexpression attenuated ox-LDL-stimulated DCs maturation and reduced atherosclerotic plaque area. In summary, our study demonstrates that MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated DCs maturation via miR-155-5p/NFIA axis. Thus, MALAT1/miR-155-5p/NFIA axis can potentially be used in the treatment of AS.
Collapse
Affiliation(s)
- Li Chen
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Liqun Hu
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Xiang Zhu
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Yan Wang
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Qing Li
- The Central Laboratory of Medical Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| | - Jian Ma
- Department of Cardiology, Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University , Shanghai, China
| | - Hongqi Li
- Department of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China; Anhui Provincial Hospital, Anhui Medical University , Hefei Anhui, 230001, P.R.China
| |
Collapse
|
11
|
Wang JL, Cai F, Liu XH, Li LM, He X, Hu XM, Kang CM, Bai HL, Zhang RY, Wu CM, Wu LM, Wang J, Zheng L, Ping BH, Hu YW, Wang Q. Lipopolysaccharide Promotes Inflammatory Response via Enhancing IFIT1 Expression in Human Umbilical Vein Endothelial Cells. DNA Cell Biol 2020; 39:1274-1281. [PMID: 32551893 DOI: 10.1089/dna.2020.5454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jia-Li Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Linyi People's Hospital of Shandong Province, Linyi, China
| | - Fen Cai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Xue-Hui Liu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Li-Min Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu-Mei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chun-Min Kang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huan-Lan Bai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ru-Yi Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Meng Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li-Mei Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Jia Wang
- Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bao-Hong Ping
- Department of Hui Qiao, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Capsaicin-Sensitive Sensory Nerves and the TRPV1 Ion Channel in Cardiac Physiology and Pathologies. Int J Mol Sci 2020; 21:ijms21124472. [PMID: 32586044 PMCID: PMC7352834 DOI: 10.3390/ijms21124472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases, including coronary artery disease, ischemic heart diseases such as acute myocardial infarction and postischemic heart failure, heart failure of other etiologies, and cardiac arrhythmias, belong to the leading causes of death. Activation of capsaicin-sensitive sensory nerves by the transient receptor potential vanilloid 1 (TRPV1) capsaicin receptor and other receptors, as well as neuropeptide mediators released from them upon stimulation, play important physiological regulatory roles. Capsaicin-sensitive sensory nerves also contribute to the development and progression of some cardiac diseases, as well as to mechanisms of endogenous stress adaptation leading to cardioprotection. In this review, we summarize the role of capsaicin-sensitive afferents and the TRPV1 ion channel in physiological and pathophysiological functions of the heart based mainly on experimental results and show their diagnostic or therapeutic potentials. Although the actions of several other channels or receptors expressed on cardiac sensory afferents and the effects of TRPV1 channel activation on different non-neural cell types in the heart are not precisely known, most data suggest that stimulation of the TRPV1-expressing sensory nerves or stimulation/overexpression of TRPV1 channels have beneficial effects in cardiac diseases.
Collapse
|
13
|
Zhou Z, Chen Y, Ni W, Liu T. Upregulation of Nuclear Factor IA Suppresses Oxidized Low-Density Lipoprotein-Induced Endoplasmic Reticulum Stress and Apoptosis in Human Umbilical Vein Endothelial Cells. Med Sci Monit 2019; 25:1009-1016. [PMID: 30721172 PMCID: PMC6373224 DOI: 10.12659/msm.912132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is part of the cardiovascular pathological processes, including atherosclerosis. Nuclear factor IA (NFIA) influences atherosclerosis development; however, its effects on ERS remain unknown. This study investigated the effect of NFIA on oxidized low-density lipoprotein (ox-LDL)-induced ERS and apoptosis in endothelial cells. Material/Methods Ox-LDL was used to induce lipotoxicity in human umbilical vein endothelial cells (HUVECs) to establish an in vitro oxidative injury model transfected with pcDNA3.0-NFIA. The cytotoxic response was detected using an assay to determine the release of lactate dehydrogenase (LDH). Morphological changes in cell apoptosis were detected using Hoechst 33258 staining. The proportion of apoptotic cells, releases of reactive oxygen species (ROS), and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression levels of apoptosis- and ERS-related molecules were detected through Western blotting. Results NFIA expression was downregulated in the in vitro oxidative cell-injury model. Exposure of HUVECs to ox-LDL resulted in a significant increase in apoptosis, decrease in ROS levels, and loss of ΔΨm. Overexpression of NFIA remarkably inhibited ERS and mitochondrial-mediated apoptosis induced by ox-LDL in HUVECs by reversing the effect of ox-LDL on the expression of JNK1, p-JNK1, CHOP, Cyt C, and Bax. Conclusions These results demonstrated that NFIA might have beneficial effects in the prevention of ox-LDL-induced ERS and apoptosis in vascular endothelial cells. This study provided new insights into the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Cardiology, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Yu Chen
- Comprehensive Ward, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Wei Ni
- Department of Cardiology, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| | - Tao Liu
- Department of Cardiology, Central Hospital of Nanchong, The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan, China (mainland)
| |
Collapse
|
14
|
Martínez-Ortega L, Mira A, Fernandez-Carvajal A, Mateo CR, Mallavia R, Falco A. Development of A New Delivery System Based on Drug-Loadable Electrospun Nanofibers for Psoriasis Treatment. Pharmaceutics 2019; 11:E14. [PMID: 30621136 PMCID: PMC6359116 DOI: 10.3390/pharmaceutics11010014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic autoimmune systemic disease with an approximate incidence of 2% worldwide; it is commonly characterized by squamous lesions on the skin that present the typical pain, stinging, and bleeding associated with an inflammatory response. In this work, poly(methyl vinyl ether-alt-maleic ethyl monoester) (PMVEMA-ES) nanofibers have been designed as a delivery vehicle for three therapeutic agents with palliative properties for the symptoms of this disease (salicylic acid, methyl salicylate, and capsaicin). For such a task, the production of these nanofibers by means of the electrospinning technique has been optimized. Their morphology and size have been characterized by optical microscopy and scanning electron microscopy (SEM). By selecting the optimal conditions to achieve the smallest and most uniform nanofibers, approximate diameters of up to 800⁻900 nm were obtained. It was also determined that the therapeutic agents that were used were encapsulated with high efficiency. The analysis of their stability over time by GC-MS showed no significant losses of the encapsulated compounds 15 days after their preparation, except in the case of methyl salicylate. Likewise, it was demonstrated that the therapeutic compounds that were encapsulated conserved, and even improved, their capacity to activate the transient receptor potential cation channel 1 (TRPV1) channel, which has been associated with the formation of psoriatic lesions.
Collapse
Affiliation(s)
- Leticia Martínez-Ortega
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Amalia Mira
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Asia Fernandez-Carvajal
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - C Reyes Mateo
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Ricardo Mallavia
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Alberto Falco
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| |
Collapse
|
15
|
Inflammatory cytokines are involved in dihydrocapsaicin (DHC) and regional cooling infusion (RCI)-induced neuroprotection in ischemic rat. Brain Res 2018; 1710:173-180. [PMID: 30584925 DOI: 10.1016/j.brainres.2018.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The combination of pharmacological hypothermia - dihydrocapsaicin (DHC) and intra-arterial regional cooling infusions (RCI) was found to enhance the efficiency of hypothermia and efficacy of hypothermia-induced neuroprotection in acute ischemic stroke. The aim of this study was to explore whether the combination could induce a long-term neuroprotective effects, as well as the underlying mechanism. METHODS Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h using intraluminal hollow filament. The ischemic rats were randomized to receive pharmacological hypothermia by intraperitoneal (i.p.) injection of DHC, physical hypothermia by RCI of 6 ml cold saline (4 °C), the combination, and no treatment. Over a 21-day period, brain damage was determined by infarct volume with MRI, and neurological deficit with grid-walking and beam balance tests. Blood brain barrier (BBB) was assessed by Evans-Blue (EB) contents. Inflammatory cytokines were determined in peri-infarct area by antibody array and ELISA. RESULTS The combination of DHC and RCI reduced (p < 0.05) infarct volume and neurologic deficit after stroke. BBB leakage and pro-inflammatory cytokines (IFN-γ, IL-2, and TNF-α) were significantly decreased (p < 0.05) because of the combination, while protective cytokines (IL-4 and IL-10) were increased (p < 0.05) in the peri-infarct area. CONCLUSIONS The combination approach enhanced the efficacy of hypothermia-induced neuroprotection following ischemic stroke. Our findings provide a hint to translate the combination method from bench to bedside.
Collapse
|
16
|
Kunde DA, Yingchoncharoen J, Jurković S, Geraghty DP. TRPV1 mediates capsaicin-stimulated metabolic activity but not cell death or inhibition of interleukin-1β release in human THP-1 monocytes. Toxicol Appl Pharmacol 2018; 360:9-17. [PMID: 30244119 DOI: 10.1016/j.taap.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 01/25/2023]
Abstract
Human monocytes and dendritic cells express transient receptor potential vanilloid 1 (TRPV1) which may play a role in mediating the inflammatory, immune and cancer surveillance responses of these cells. The aim of the present study was to investigate TRPV1 expression and function in THP-1 monocytic cells. RT-PCR and Western blot were used to detect TRPV1. The metabolic activity and viability of THP-1 cells following exposure to vanilloids was assessed using resorufin production from rezazurin. Cytokine release was measured using ELISA. TRPV1 was expressed in cultured THP-1 monocytic cells and naïve monocytes. Lower concentrations (<250 μM) of capsaicin, but not other putative TRPV1 agonists, were shown to stimulate cell metabolic activity, whereas at concentrations >250 μM, all agonists decreased metabolic activity. Capsaicin-stimulated THP-1 metabolic activity was blocked by the TRPV1 antagonist, 5-iodo-resiniferatoxin (5'-IRTX), whereas the decline in resorufin production by THP-1 cells at higher capsaicin concentrations (due to cell death), was not affected by 5'-IRTX. Finally, capsaicin (≤125 μM) significantly increased lipopolysaccharide-stimulated IL-6 and TNF-α release from THP-1 cells, whereas phytohaemagglutinin-stimulated IL-1β, TNF-α, MCP-1 and IL-6 release were concentration-dependently inhibited by capsaicin. Modulation of IL-1β release was not TRPV1 mediated. Overall, these results show that functional TRPV1 channels are present in naïve monocytes and THP-1 cells, and when activated, increase cell metabolic activity. In addition, capsaicin modifies cytokine release from THP-1 cells and induces cell death, most likely by a mechanism that is independent of TRPV1 activation.
Collapse
Affiliation(s)
- Dale A Kunde
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | | | - Saša Jurković
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Dominic P Geraghty
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia.
| |
Collapse
|
17
|
Dihydrocapsaicin Attenuates Blood Brain Barrier and Cerebral Damage in Focal Cerebral Ischemia/Reperfusion via Oxidative Stress and Inflammatory. Sci Rep 2017; 7:10556. [PMID: 28874782 PMCID: PMC5585260 DOI: 10.1038/s41598-017-11181-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of dihydrocapsaicin (DHC) on cerebral and blood brain barrier (BBB) damage in cerebral ischemia and reperfusion (I/R) models. The models were induced by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion. The rats were divided into five groups: sham, or control group; vehicle group; and 2.5 mg/kg, 5 mg/kg, and 10 mg/kg BW DHC-treated I/R groups. After 24 h of reperfusion, we found that DHC significantly reduced the area of infarction, morphology changes in the neuronal cells including apoptotic cell death, and also decreased the BBB damage via reducing Evan Blue leakage, water content, and ultrastructure changes, in addition to increasing the tight junction (TJ) protein expression. DHC also activated nuclear-related factor-2 (Nrf2) which involves antioxidant enzymes like superoxide dismutase (SOD) and glutathione peroxidase (GPx), and significantly decreased oxidative stress and inflammation via down-regulated reactive oxygen species (ROS), NADPH oxidase (NOX2, NOX4), nuclear factor kappa-beta (NF-ĸB), and nitric oxide (NO), including matrix metalloproteinases-9 (MMP-9) levels. DHC protected the cerebral and the BBB from I/R injury via attenuation of oxidative stress and inflammation. Therefore, this study offers to aid future development for protection against cerebral I/R injury in humans.
Collapse
|