1
|
Kirikovich SS, Levites EV, Proskurina AS, Ritter GS, Dolgova EV, Ruzanova VS, Oshihmina SG, Snegireva JS, Gamaley SG, Sysoeva GM, Danilenko ED, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Production of GcMAF with Anti-Inflammatory Properties and Its Effect on Models of Induced Arthritis in Mice and Cystitis in Rats. Curr Issues Mol Biol 2024; 46:10934-10959. [PMID: 39451530 PMCID: PMC11506609 DOI: 10.3390/cimb46100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Vitamin D3 transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α-M1 phenotype) or anti-inflammatory (TGF-β, IL-10-M2 phenotype) cytokines. The condition for the transition of the direction of the inflammatory response of macrophages when exposed to GcMAF is the initial glycosylated state of the population of DBP molecules and the associated effective deglycosylation of DBP by β-galactosidase. In vivo experiments with GcMAF exhibiting anti-inflammatory properties on models of induced arthritis in mice and cystitis in rats indicate a significant anti-inflammatory effect of the macrophage activator. The feasibility of unidirectional induction of anti-inflammatory properties of macrophages allows creation of combined therapeutic platforms where M2 macrophages are among the key therapeutic components.
Collapse
Affiliation(s)
- Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Sofya G. Oshihmina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Julia S. Snegireva
- Faculty of Biotechnologies, ITMO University, 191002 Saint Petersburg, Russia;
| | - Svetlana G. Gamaley
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (S.G.G.); (G.M.S.); (E.D.D.); (O.S.T.)
| | - Galina M. Sysoeva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (S.G.G.); (G.M.S.); (E.D.D.); (O.S.T.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (S.G.G.); (G.M.S.); (E.D.D.); (O.S.T.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (S.G.G.); (G.M.S.); (E.D.D.); (O.S.T.)
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (E.V.D.); (V.S.R.); (S.G.O.); (N.A.K.)
| |
Collapse
|
2
|
Kirikovich SS, Levites EV, Proskurina AS, Ritter GS, Peltek SE, Vasilieva AR, Ruzanova VS, Dolgova EV, Oshihmina SG, Sysoev AV, Koleno DI, Danilenko ED, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. The Molecular Aspects of Functional Activity of Macrophage-Activating Factor GcMAF. Int J Mol Sci 2023; 24:17396. [PMID: 38139225 PMCID: PMC10743851 DOI: 10.3390/ijms242417396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1β) and 63 kDa-anti-inflammatory (TGF-β, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.
Collapse
Affiliation(s)
- Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey E. Peltek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Asya R. Vasilieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sofya G. Oshihmina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Alexandr V. Sysoev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Danil I. Koleno
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.S.); (D.I.K.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia; (E.D.D.); (O.S.T.)
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (A.A.O.); (E.R.C.)
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.L.); (A.S.P.); (G.S.R.); (S.E.P.); (A.R.V.); (V.S.R.); (E.V.D.); (S.G.O.); (N.A.K.)
| |
Collapse
|
3
|
Dolgova EV, Kirikovich SS, Levites EV, Ruzanova VS, Proskurina AS, Ritter GS, Taranov OS, Varaksin NA, Ryabicheva TG, Leplina OY, Ostanin AA, Chernykh ER, Bogachev SS. Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity. Int J Mol Sci 2022; 23:8075. [PMID: 35897653 PMCID: PMC9330714 DOI: 10.3390/ijms23158075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP). DBP was obtained from the blood of healthy donors using affinity chromatography on a column with covalently bound actin. GcMAF-related factor (GcMAF-RF) was converted in a mixture with induced lymphocytes through the cellular enzymatic pathway. The obtained GcMAF-RF activates murine peritoneal macrophages (p < 0.05), induces functional properties of dendritic cells (p < 0.05) and promotes in vitro polarization of human M0 macrophages to M1 macrophages (p < 0.01). Treatment of whole blood cells with GcMAF-RF results in active production of both pro- and anti-inflammatory cytokines. It is shown that macrophage activation by GcMAF-RF is inhibited by tumor-secreted factors. In order to identify the specific antitumor effect of GcMAF-RF-activated macrophages, an approach to primary reduction of humoral suppressor activity of the tumor using the Karanahan therapy followed by macrophage activation in the tumor-associated stroma (TAS) was proposed. A prominent additive effect of GcMAF-RF, which enhances the primary immune response activation by the Karanahan therapy, was shown in the model of murine Lewis carcinoma. Inhibition of the suppressive effect of TAS is the main condition required for the manifestation of the antitumor effect of GcMAF-RF. When properly applied in combination with any chemotherapy, significantly reducing the humoral immune response at the advanced tumor site, GcMAF-RF is a promising antitumor therapeutic agent that additively destroys the pro-tumor properties of macrophages of the tumor stroma.
Collapse
Affiliation(s)
- Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
- Department of Natural Sciences, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia;
| | | | | | - Olga Yu. Leplina
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (O.Y.L.); (A.A.O.); (E.R.C.)
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (O.Y.L.); (A.A.O.); (E.R.C.)
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia; (O.Y.L.); (A.A.O.); (E.R.C.)
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.D.); (S.S.K.); (E.V.L.); (V.S.R.); (A.S.P.); (G.S.R.)
| |
Collapse
|
4
|
Albracht SP. Immunotherapy with GcMAF revisited - A critical overview of the research of Nobuto Yamamoto. Cancer Treat Res Commun 2022; 31:100537. [PMID: 35217488 DOI: 10.1016/j.ctarc.2022.100537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
This overview describes the research of Nobutu Yamamoto (Philadelphia) concerning immunotherapy with GcMAF for patients with cancer and for patients infected with pathogenic envelope viruses. GcMAF (Group-specific component Macrophage-Activating Factor) is a mammalian protein with an incredible potency to directly activate macrophages. Since the late 1980s Yamamoto's investigations were published in numerous journals but in order to understand the details of his research, a minute survey of many of his patents was required. But even then, regrettably, a precise description of his experiments was sometimes lacking. This overview tries to summarize all of Yamamoto's research on GcMAF, as well as some selected more recent papers from other investigators, who tried to verify and/or reproduce Yamamoto's reports. In my opinion the most important result of the GcMAF research deserves widespread renewed attention: human GcMAF injections (100 ng per week, intramuscular or intravenous) can help to cure patients with a great variety of cancers as well as patients infected with pathogenic envelope viruses like the human immunodeficiency virus 1 (HIV-1), influenza, measles and rubella (and maybe also SARS-CoV-2). From Yamamoto's data it can be calculated that GcMAF is a near-stoichiometric activator of macrophages. Yamamoto monitored the progress of his immunotherapy via the serum level of an enzyme called nagalase (α-N-acetylgalactosaminidase activity at pH 6). I have extensively discussed the properties and potential catalytic site of this enzyme activity in an Appendix entitled: "Search for the potential active site of the latent α-N-acetylgalactosaminidase activity in the glycoproteins of some envelope viruses".
Collapse
Affiliation(s)
- Simon Pj Albracht
- Biochemist, retired from the Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Luebbering N, Abdullah S, Lounder D, Lane A, Dole N, Rubinstein J, Hewison M, Gloude N, Jodele S, Perentesis KMR, Lake K, Litts B, Duell A, Dandoy CE, Davies SM. Endothelial injury, F-actin and vitamin-D binding protein after hematopoietic stem cell transplant and association with clinical outcomes. Haematologica 2021; 106:1321-1329. [PMID: 32241849 PMCID: PMC8094097 DOI: 10.3324/haematol.2019.233478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Indexed: 01/22/2023] Open
Abstract
Endothelial injury after hematopoietic stem cell transplant is an important initiating factor for early transplant toxicities of thrombotic microangiopathy and acute graft versus host disease. We hypothesized that release of the angiopathic molecule filamentous actin (F-actin) from hematopoietic cells lysed during conditioning prior to stem cell transplant would be associated with clinical outcomes. We detected F-actin in the blood of 52% of stem cell transplant recipients in the first 14 days after transplant, and children with detectable F-actin had a significantly elevated risk of thrombotic microangiopathy (P=0.03) and non-relapse mortality (P=0.04). F-actin is cleared from the circulation by vitamin D binding protein (VDBP) so we expected that higher levels of VDBP would improve outcomes. In a cohort of 190 children receiving an allogeneic transplant, risk of thrombotic microangiopathy was reduced in those with serum concentrations of VDBP above the median at day 30 (10% vs. 31%, P=0.01), and graft versus host disease and non-relapse mortality were reduced in those with levels above the median at day 100 (3% vs. 18%, P=0.04 and 0% vs. 15%, P=0.002). Western blot analyses demonstrated actin-VDBP complexes in the blood, which cleared by day 21-28. Our data support modulation of cytokine secretion and macrophage phenotype by VDBP later after transplant. Taken together, our data identify an association between Factin, a mediator of endothelial damage, and VDBP, an actin scavenger, as modifiers of risk of clinical consequences of endothelial injury.
Collapse
Affiliation(s)
- Nathan Luebbering
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sheyar Abdullah
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dana Lounder
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam Lane
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nikhil Dole
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeremy Rubinstein
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Martin Hewison
- School of Clinical and Experimental Medicine, University of, University of Birmingham, UK
| | - Nicholas Gloude
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sonata Jodele
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kitty M R Perentesis
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly Lake
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bridget Litts
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexandra Duell
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher E Dandoy
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stella M Davies
- Department of Pediatric, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
6
|
Nabeshima Y, Abe C, Kawauchi T, Hiroi T, Uto Y, Nabeshima YI. Simple method for large-scale production of macrophage activating factor GcMAF. Sci Rep 2020; 10:19122. [PMID: 33154460 PMCID: PMC7645693 DOI: 10.1038/s41598-020-75571-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022] Open
Abstract
Human group-specific component protein (Gc protein) is a multifunctional serum protein which has three common allelic variants, Gc1F, Gc1S and Gc2 in humans. Gc1 contains an O-linked trisaccharide [sialic acid-galactose-N-acetylgalactosamine (GalNAc)] on the threonine420 (Thr420) residue and can be converted to a potent macrophage activating factor (GcMAF) by selective removal of sialic acid and galactose, leaving GalNAc at Thr420. In contrast, Gc2 is not glycosylated. GcMAF is considered a promising candidate for immunotherapy and antiangiogenic therapy of cancers and has attracted great interest, but it remains difficult to compare findings among research groups because different procedures have been used to prepare GcMAF. Here, we present a simple, practical method to prepare high-quality GcMAF by overexpressing Gc-protein in a serum-free suspension culture of ExpiCHO-S cells, without the need for a de-glycosylation step. We believe this protocol is suitable for large-scale production of GcMAF for functional analysis and clinical testing.
Collapse
Affiliation(s)
- Yoko Nabeshima
- Laboratory of Molecular Life Science, Center of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe, 650-0047, Japan
| | - Chiaki Abe
- Laboratory of Molecular Life Science, Center of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe, 650-0047, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Center of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe, 650-0047, Japan
| | - Tomoko Hiroi
- Laboratory of Molecular Life Science, Center of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe, 650-0047, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, 770-8506, Japan
| | - Yo-Ichi Nabeshima
- Laboratory of Molecular Life Science, Center of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
7
|
Morita Y, Wang R, Li X, Muramatsu T, Ueda M, Hachimura S, Takahashi S, Miyakawa T, Tanokura M. Improved preparation of group-specific component (Gc) protein to derive macrophage activating factor. Protein Expr Purif 2020; 175:105714. [PMID: 32738434 DOI: 10.1016/j.pep.2020.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Cancer immunotherapy has recently attracted attention as an approach for cancer treatment through the activation of the immune system. Group-specific component (Gc) protein is a precursor for macrophage activating factor (GcMAF), which has a promising immunomodulatory effect on the suppression of tumor growth and angiogenesis. In this study, we successfully purified Gc protein from human serum using anion-exchange chromatography combined with affinity chromatography using a 25-OH-D3-immobilized column. The purity of Gc protein reached 95.0% after anion-exchange chromatography. The known allelic variants of Gc protein are classified into three subtypes-Gc1F, Gc1S and Gc2. The fragment sequence of residues 412-424 determined according to their MS/MS spectra is available to evaluate the subtypes of Gc protein. The data showed that the Gc protein purified in this study consisted of the Gc1F and Gc2 subtypes. Our method improved the purity of Gc protein, which was not affected by the treatment to convert it into GcMAF using β-galactosidase- or neuraminidase-immobilized resin, and will be useful for biological studies and/or advanced clinical uses of GcMAF, such as cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Morita
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Medical Viara, 5-19 Akashi-cho, Chuo-ku, Tokyo, 104-0044, Japan; MAF Clinic, 5-19 Akashi-cho, Chuo-ku, Tokyo, 104-0044, Japan
| | - Rong Wang
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Xuyang Li
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomonari Muramatsu
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masumi Ueda
- Medical Viara, 5-19 Akashi-cho, Chuo-ku, Tokyo, 104-0044, Japan; MAF Clinic, 5-19 Akashi-cho, Chuo-ku, Tokyo, 104-0044, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Sachiko Takahashi
- Medical Viara, 5-19 Akashi-cho, Chuo-ku, Tokyo, 104-0044, Japan; MAF Clinic, 5-19 Akashi-cho, Chuo-ku, Tokyo, 104-0044, Japan.
| | - Takuya Miyakawa
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Masaru Tanokura
- Laboratory of Basic Science on Healthy Longevity, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
8
|
Levites EV, Kirikovich SS, Dolgova EV, Proskurina AS, Ritter GS, Ostanin АA, Chernykh ER, Bogachev SS. <i>In vitro</i> assay of biological activity of a national preparation of macrophage activating factor (GcMAF-RF). Vavilovskii Zhurnal Genet Selektsii 2020; 24:284-291. [PMID: 33659810 PMCID: PMC7905294 DOI: 10.18699/vj20.621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
В статье сообщается о разработанном оригинальном способе получения витамин D3-связывающего
белка (DBP) и его конвертации в макрофаг-активирующий фактор GcMAF-RF. Согласно разработанному
регламенту, DBP получали из плазмы крови человека, применяя аффинную колоночную хроматографию, очи-
щали и модифицировали до GcMAF-RF с использованием цитоиммобилизованных гликозидаз (бета-галакто-
зидаза и нейраминидаза). Принадлежность полученного полипептида к Gc-группе глобулинов плазмы крови
подтверждали вестерн-блотом с использованием специфических антител. Полученный полипептид по своим
молекулярным свойствам соответствует описанному в литературе белку GсMAF, находящемуся на стадии кли-
нических испытаний в США, Британии, Израиле и Японии (Saisei Mirai, Reno Integrative Medical Center, Immuno
Biotech Ltd, Efranat, Catalytic Longevity). Биологическую активность препарата GcMAF-RF определяли по индук-
ции у перитонеальных макрофагов мыши фагоцитарной активности и способности продуцировать моноок-
сид азота (NO) in vitro. Фагоцитарную активность макрофагов оценивали по эффективности захвата магнитных
шариков. Степень активации макрофагов рассчитывали по отношению числа захваченных шариков к общему
числу макрофагов. Уровень продукции NO оценивали по накоплению монооксида азота в культуральных су-
пернатантах перитонеальных макрофагов колориметрическим методом с использованием реактива Грисса.
Показано, что GcMAF-RF кратно увеличивает фагоцитарную активность макрофагов и достоверно увеличивает
продукцию ими монооксида азота. Выделенный оригинальным способом активатор макрофагов GcMAF-RF по
своим характеристикам (согласно материалам, опубликованным в печати) соответствует препаратам GcMAF,
представляемым на рынке зарубежными компаниями, и может рассматриваться как новый отечественный био-
логически активный препарат с широким спектром действия. Наибольший интерес вызывает его способность
через активацию макрофагов усиливать адаптивный иммунитет организма. В этой связи предполагаются два
направления терапевтического применения препарата GcMAF-RF. Препарат может быть востребован в области
лечения онкологических заболеваний и, кроме того, может быть использован при лечении ряда нейродегене-
ративных патологий и иммунодефицитных состояний.
Collapse
Affiliation(s)
- E. V. Levites
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - S. S. Kirikovich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - E. V. Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - A. S. Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| | - G. S. Ritter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| | | | | | - S. S. Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
9
|
Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D Binding Protein: A Historic Overview. Front Endocrinol (Lausanne) 2019; 10:910. [PMID: 31998239 PMCID: PMC6965021 DOI: 10.3389/fendo.2019.00910] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin D and all its metabolites are bound to a specific vitamin D binding protein, DBP. This protein was originally first discovered by its worldwide polymorphism and called Group-specific Component (GC). We now know that DBP and GC are the same protein and appeared early in the evolution of vertebrates. DBP is genetically the oldest member of the albuminoid family (including albumin, α-fetoprotein and afamin, all involved in transport of fatty acids or hormones). DBP has a single binding site for all vitamin D metabolites and has a high affinity for 25OHD and 1,25(OH)2D, thereby creating a large pool of circulating 25OHD, which prevents rapid vitamin D deficiency. DBP of higher vertebrates (not amphibians or reptiles) binds with very high affinity actin, thereby preventing the formation of polymeric actin fibrils in the circulation after tissue damage. Megalin is a cargo receptor and is together with cubilin needed to reabsorb DBP or the DBP-25OHD complex, thereby preventing the urinary loss of these proteins and 25OHD. The total concentrations of 25OHD and 1,25(OH)2D in DBP null mice or humans are extremely low but calcium and bone homeostasis remain normal. This is the strongest argument for claiming that the "free hormone hypothesis" also applies to the vitamin D hormone, 1,25(OH)2D. DBP also transports fatty acids, and can play a role in the immune system. DBP is genetically very polymorphic with three frequent alleles (DBP/GC 1f, 1s, and 2) but in total more than 120 different variants but its health consequences, if any, are not understood. A standardization of DBP assays is essential to further explore the role of DBP in physiology and diseases.
Collapse
Affiliation(s)
- Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- *Correspondence: Roger Bouillon
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Leen Antonio
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Fraydoon Rastinejad
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Kilpatrick LE, Phinney KW. Quantification of Total Vitamin-D-Binding Protein and the Glycosylated Isoforms by Liquid Chromatography–Isotope Dilution Mass Spectrometry. J Proteome Res 2017; 16:4185-4195. [DOI: 10.1021/acs.jproteome.7b00560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lisa E. Kilpatrick
- National Institute of Standards and Technology, Material Measurement
Laboratory, Biomolecular Measurement Division, 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| | - Karen W. Phinney
- National Institute of Standards and Technology, Material Measurement
Laboratory, Biomolecular Measurement Division, 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| |
Collapse
|