1
|
Won Y, Kim HH, Jeong SH, Bhosale PB, Abusaliya A, Heo JD, Seong JK, Ahn MJ, Kim HJ, Kim GS. The Effects of Iridin and Irigenin on Cancer: Comparison with Well-Known Isoflavones in Breast, Prostate, and Gastric Cancers. Int J Mol Sci 2025; 26:2390. [PMID: 40141034 PMCID: PMC11942201 DOI: 10.3390/ijms26062390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer, a worldwide problem and one of the leading causes of death due to uncontrolled cell proliferation, can be caused by various factors, such as genetic and environmental factors. Apoptosis is a programmed cell death mechanism that eliminates abnormal cells or renews cells. There are two main apoptotic pathways: intrinsic and extrinsic pathways. These pathways can be affected by various signaling pathways in cancer, such as the PI3K/AKT, MAPK, Wnt, and JAK/STAT pathways. Numerous approaches to cancer treatment have been studied, and among them, natural compounds have been actively researched. Flavonoids are natural compounds from fruits and vegetables and have been studied for their anti-cancer effects. Isoflavones, one of the subclasses of flavonoids, are usually found in soy food or legumes and are effective in several bioactive functions. The well-known isoflavones are genistein, daidzein, and glycitein. Irigenin and iridin can be extracted from the Iris family. Both irigenin and iridin are currently being studied for anti-inflammation, antioxidant, and anti-cancer by inducing apoptosis. In this review, we summarized five isoflavones, genistein, daidzein, glycitein, irigenin, and iridin and their effects on three different cancers: breast cancer, prostate cancer, and gastric cancer.
Collapse
Affiliation(s)
- Yaeram Won
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hun-Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Se-Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| | - Jeong-Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea;
| | - Je-Kyung Seong
- Laboratory of Developmental Biology and Goenomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Mee-Jung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea;
| | - Hye-Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (Y.W.); (H.-J.K.)
- Department of Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Gon-Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.-H.K.); (S.-H.J.); (P.B.B.); (A.A.)
| |
Collapse
|
2
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
3
|
Bangash AA, Alvi SS, Bangash MA, Ahsan H, Khan S, Shareef R, Villanueva G, Bansal D, Ahmad M, Kim DJ, Chauhan SC, Hafeez BB. Honey Targets Ribosome Biogenesis Components to Suppress the Growth of Human Pancreatic Cancer Cells. Cancers (Basel) 2024; 16:3431. [PMID: 39410048 PMCID: PMC11475701 DOI: 10.3390/cancers16193431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic cancer (PanCa) is one of the deadliest cancers, with limited therapeutic response. Various molecular oncogenic events, including dysregulation of ribosome biogenesis, are linked to the induction, progression, and metastasis of PanCa. Thus, the discovery of new therapies suppressing these oncogenic events and ribosome biogenesis could be a novel therapeutic approach for the prevention and treatment of PanCa. The current study was designed to investigate the anti-cancer effect of honey against PanCa. Our results indicated that honey markedly inhibited the growth and invasive characteristics of pancreatic cancer cells by suppressing the mRNA expression and protein levels of key components of ribosome biogenesis, including RNA Pol-I subunits (RPA194 and RPA135) along with its transcriptional regulators, i.e., UBTF and c-Myc. Honey also induced nucleolar stress in PanCa cells by reducing the expression of various nucleolar proteins (NCL, FBL, and NPM). Honey-mediated regulation on ribosome biogenesis components and nucleolar organization-associated proteins significantly arrested the cell cycle in the G2M phase and induced apoptosis in PanCa cells. These results, for the first time, demonstrated that honey, being a natural remedy, has the potential to induce apoptosis and inhibit the growth and metastatic phenotypes of PanCa by targeting ribosome biogenesis.
Collapse
Affiliation(s)
- Aun Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sahir Sultan Alvi
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Muhammad Ali Bangash
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Haider Ahsan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shiza Khan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rida Shareef
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Georgina Villanueva
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Divyam Bansal
- Department of Kinesiology, Rice University, Houston, TX 77251, USA;
| | - Mudassier Ahmad
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Dae Joon Kim
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Bilal Bin Hafeez
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (A.A.B.); (M.A.B.); (H.A.); (S.K.); (R.S.); (G.V.); (M.A.); (D.J.K.); (S.C.C.)
- Department of Medicine and Oncology ISU, Division of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
4
|
Ahmad P, Shah A, Waiz M, Chaturvedi CP, Alvi SS, Khan MS. Organosulfur Compounds, S-Allyl-L-Cysteine and S-Ethyl-L-Cysteine, Target PCSK-9/LDL-R-Axis to Ameliorate Cardiovascular, Hepatic, and Metabolic Changes in High Carbohydrate and High Fat Diet-Induced Metabolic Syndrome in Rats. Phytother Res 2024. [PMID: 39225240 DOI: 10.1002/ptr.8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Metabolic syndrome (MetS) is an ever-evolving set of diseases that poses a serious health risk in many countries worldwide. Existing evidence illustrates that individuals with MetS have a 30%-40% higher chance of acquiring type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), or both. This study was undertaken to uncover the regulatory role of natural organosulfur compounds (OSCs), S-allyl-L-cysteine (SAC), and S-ethyl-L-cysteine (SEC), in targeting high carbohydrate high fat (HCHF)-diet-induced MetS-associated risk management. Our findings suggested that SAC and SEC ameliorated HCHF-diet-induced diabetic profiles, plasma lipid and lipoprotein level, liver function, oxidative-stress, inflammatory cytokines, and chemokines including monocyte chemoattractant protein-1 (MCP-1), lipid peroxidation, plasma proprotein convertase subtilisin/kexin type-9 (PCSK-9), and high-sensitivity C-reactive protein (hs-CRP). Moreover, the assessment of the hepatic mRNA expression of the key genes involved in cholesterol homeostasis depicted that SAC and SEC downregulated the PCSK-9 mRNA expression via targeting the expression of HNF-1α, a transcriptional activator of PCSK-9. On the other hand, the LDL-receptor (LDL-R) expression was upregulated through the activation of its transcriptional regulator sterol regulatory element binding protein-2 (SREBP-2). In addition, the activity and the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme-A reductases (HMG-R) and peroxisome proliferator-activated receptors (PPARs) were also improved by the treatment of SAC and SEC. We concluded that SAC and SEC can protect against MetS via improving the lipid and lipoprotein content, glycemic indices, hepatic function, targeting the inflammatory cascades, and oxidative imbalance, regulation of the mRNA expression of PCSK-9, LDL-R, SREBP-2, HNF-1α, PPARs, and inflammatory biomarkers.
Collapse
Affiliation(s)
- Parvej Ahmad
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Arunim Shah
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Mohd Waiz
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Chandra P Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
- Department of Medicine and Oncology ISU, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence for Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - M Salman Khan
- Integral Information & Research Center (IIRC-5), Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Ahmed H, Fayyaz TB, Khatian N, Usman S, Nisar U, Abid M, Ali SA, Abbas G. Phloroglucinol inhibited glycation via entrapping carbonyl intermediates. PLoS One 2024; 19:e0307708. [PMID: 39052603 PMCID: PMC11271877 DOI: 10.1371/journal.pone.0307708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Advanced glycation end products (AGEs) play an important role in the pathogenesis of age-linked disorders and diabetes mellitus. The aim of this study was to assess the repurposing potential of Phloroglucinol (PHL the antispasmodic drug), as an anti-glycation agent using Fructose-BSA model. The ability of PHL to inhibit AGE formation was evaluated using AGEs formation (Intrinsic fluorescence), fructosamine adduct (NBT) and free lysine availability (TNBSA) assays. The BSA protein conformation was assessed through Thioflavin-T, Congo-Red and Circular Dichroism assays. The lysine blockade and carbonyl entrapment were explored as possible mode of action. Our data showed that PHL significantly decreased the formation of AGEs with an IC50 value of 0.3mM. The fructosamine adducts and free lysine load was found to be reduced. Additionally, the BSA conformation was preserved by PHL. Mechanistic assays did not reveal involvement of lysine blockade as underlying reason for reduction in AGEs load. This was also supported by computational data whereby PHL failed to engage any catalytic residue involved in early fructose-BSA interaction. However, it was found to entrap the carbonyl moieties. In conclusion, the PHL demonstrated anti-glycation potential, which can be attributed to its ability to entrap carbonyl intermediates. Hence, the clinically available antispasmodic drug, presents itself as a promising candidate to be repurposed as anti-glycation agent.
Collapse
Affiliation(s)
- Hammad Ahmed
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Talha Bin Fayyaz
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Najeeb Khatian
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Shumaila Usman
- Department of Molecular Medicine, Ziauddin University, Karachi, Pakistan
| | - Uzair Nisar
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Mohammad Abid
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
6
|
Tai Y, Zhang Z, Liu Z, Li X, Yang Z, Wang Z, An L, Ma Q, Su Y. D-ribose metabolic disorder and diabetes mellitus. Mol Biol Rep 2024; 51:220. [PMID: 38281218 PMCID: PMC10822815 DOI: 10.1007/s11033-023-09076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
D-ribose, an ubiquitous pentose compound found in all living cells, serves as a vital constituent of numerous essential biomolecules, including RNA, nucleotides, and riboflavin. It plays a crucial role in various fundamental life processes. Within the cellular milieu, exogenously supplied D-ribose can undergo phosphorylation to yield ribose-5-phosphate (R-5-P). This R-5-P compound serves a dual purpose: it not only contributes to adenosine triphosphate (ATP) production through the nonoxidative phase of the pentose phosphate pathway (PPP) but also participates in nucleotide synthesis. Consequently, D-ribose is employed both as a therapeutic agent for enhancing cardiac function in heart failure patients and as a remedy for post-exercise fatigue. Nevertheless, recent clinical studies have suggested a potential link between D-ribose metabolic disturbances and type 2 diabetes mellitus (T2DM) along with its associated complications. Additionally, certain in vitro experiments have indicated that exogenous D-ribose exposure could trigger apoptosis in specific cell lines. This article comprehensively reviews the current advancements in D-ribose's digestion, absorption, transmembrane transport, intracellular metabolic pathways, impact on cellular behaviour, and elevated levels in diabetes mellitus. It also identifies areas requiring further investigation.
Collapse
Affiliation(s)
- Yu Tai
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zehong Zhang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Zhi Liu
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaojing Li
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhongbin Yang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zeying Wang
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Liang An
- Department of Clinical Laboratory, the Fourth Hospital of Baotou, Baotou, Inner Mongolia, China
| | - Qiang Ma
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yan Su
- Institute of Biochemistry and Molecular Biology, Baotou Medical College, Baotou, Inner Mongolia, China.
| |
Collapse
|
7
|
Koike S, Saito Y, Ogasawara Y. Novel Fluorometric Assay of Antiglycation Activity Based on Methylglyoxal-Induced Protein Carbonylation. Antioxidants (Basel) 2023; 12:2030. [PMID: 38136150 PMCID: PMC10740428 DOI: 10.3390/antiox12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced glycation end products (AGEs), which can have multiple structures, are formed at the sites where the carbonyl groups of reducing sugars bind to the free amino groups of proteins through the Maillard reaction. Some AGE structures exhibit fluorescence, and this fluorescence has been used to measure the formation and quantitative changes in carbonylated proteins. Recently, fluorescent AGEs have also been used as an index for the evaluation of compounds that inhibit protein glycation. However, the systems used to generate fluorescent AGEs from the reaction of reducing sugars and proteins used for the evaluation of antiglycation activity have not been determined through appropriate research; thus, problems remain regarding sensitivity, quantification, and precision. In the present study, using methylglyoxal (MGO), a reactive carbonyl compound to induce glycation, a comparative analysis of the mechanisms of formation of fluorescent substances from several types of proteins was conducted. The analysis identified hen egg lysozyme (HEL) as a protein that produces stronger fluorescent AGEs faster in the Maillard reaction with MGO. It was also found that the AGE structure produced in MGO-induced in HEL was argpyrimidine. By optimizing the reaction system, we developed a new evaluation method for compounds with antiglycation activity and established an efficient evaluation method (HEL-MGO assay) with greater sensitivity and accuracy than the conventional method, which requires high concentrations of bovine serum albumin and glucose. Furthermore, when compounds known to inhibit glycation were evaluated using this method, their antiglycation activities were clearly and significantly measured, demonstrating the practicality of this method.
Collapse
Affiliation(s)
| | | | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (Y.S.)
| |
Collapse
|
8
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
9
|
Asif M, Aqil F, Alasmary FA, almalki AS, Khan AR, Nasibullah M. Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Asif M, Saquib M, Rahman Khan A, Aqil F, salem Almalki A, Ali Alasmary F, Singh J, Nasibullah M. Synthesis of Functionalized 2′,5‐Oxo‐spiro[furan‐2,3′‐indoline]‐3‐carboxylate Derivatives as Antiproliferative Agents: ADMET Studies, and Molecular Docking against P2Y12 Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Mohd Asif
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Mohammad Saquib
- Department of Chemistry University of Allahabad Prayagraj (Allahabad) 211002 India
| | - Abdul Rahman Khan
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Farrukh Aqil
- UofL Health-Brown Cancer Center and Department of Medicine University of Louisville Louisville KY40202 USA
| | - Amani salem Almalki
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Fatmah Ali Alasmary
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Jaya Singh
- Department of Chemistry LRPG College Sahibabad Ghaziabad 201005 India
| | - Malik Nasibullah
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| |
Collapse
|
11
|
Alenazi F, Saleem M, Syed Khaja AS, Zafar M, Alharbi MS, Al Hagbani T, Khan MY, Ahmad W, Ahmad S. Antiglycation potential of plant based TiO 2 nanoparticle in D-ribose glycated BSA in vitro. Cell Biochem Funct 2022; 40:784-796. [PMID: 36128730 DOI: 10.1002/cbf.3744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Biosynthetic procedure is one of the best alternatives, inexpensive and ecologically sound for the synthesis of titanium dioxide (TiO2 ) nanoparticles using a methanolic extract of medicinal plant. The main prospect of this study was to investigate the antiglycation activity of the TiO2 nanoparticles (TNP) prepared by ethanolic leaf extract of the Coleus scutellarioides. In this study, biosynthesized TNP characterized with UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscope. These TNP were further investigated with respect to their antiglycation property and it was checked in the mixture of d-ribose glycated bovine serum albumin (BSA) by measuring ketoamine, carbonyl content, Advanced glycation end products (AGEs) and aggregation of protein instigated by glycation process. The inhibitory effect of TNP to restore the structure of BSA in presence of d-ribose were also characterize by biophysical techniques mentioned above. Therefore, the findings of this study suggest repurposing of TNP for its antiglycation property that could be helpful in prevention of glycation instigated AGEs formation and structural loss of proteins.
Collapse
Affiliation(s)
- Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Mubashir Zafar
- Department of Community Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mohd Yasir Khan
- Department of Biotechnology, School of Applied & Life Science (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waseem Ahmad
- Department of Chemistry, School of Applied & Life Science (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
12
|
Alenazi F, Saleem M, Khaja ASS, Zafar M, Alharbi MS, Hagbani TA, Ashraf JM, Qamar M, Rafi Z, Ahmad S. Metformin encapsulated gold nanoparticles (MTF-GNPs): A promising antiglycation agent. Cell Biochem Funct 2022; 40:729-741. [PMID: 36098489 DOI: 10.1002/cbf.3738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 11/07/2022]
Abstract
The generation of advanced glycation end products (AGEs) through nonenzymatic protein glycation contributes to the pathogenesis of long-lived diabetic problems. Metformin (MTF) is the very first drug having antihyperglycemic effects on type II diabetes mellitus which also possess interaction with dicarbonyl compounds and blocks the formation of AGEs. In the current study, MTF is bioconjugated with glycation-derived synthesized gold nanoparticles (GNPs) of significant size. Additionally, using various biophysical and biochemical approaches, we investigated the antiglycating capacity MTF-GNPs in contrast to MTF against d-ribose-derived glycation of bovine serum albumin. Our key findings via utilizing various assays demonstrated that MTF-GNPs were able to inhibit AGEs development by reducing hyperchromicity, early glycation products, carbonyl content, hydxoxymethylfurfural content, production of fluorescent AGEs, normalizing the loss of secondary structure (i.e., α-helix and β-sheets) of proteins, elevating the levels of free lysine and free arginine more efficiently compared to pure MTF. Based on these results, we concluded that MTF-GNPs possess a considerable antiglycation property and may be developed as an outstanding anti-AGEs treatment drug. Further in vivo and clinical research are necessary to determine the therapeutic effects of MTF-GNPs against AGE-related and metabolic disorders.
Collapse
Affiliation(s)
- Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Mubashir Zafar
- Department of Community Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Jalaluddin Mohammad Ashraf
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Zeeshan Rafi
- Department of Biosciences, Integral University, Lucknow, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
13
|
Ahmad S, Al-Shaghdali K, Rehman S, Khan MY, Rafi Z, Faisal M, Alatar AA, Tahir IK, Khan S, Ahmad S, Shahab U. Nonenzymatic glycosylation of isolated human immunoglobulin-G by D-ribose. Cell Biochem Funct 2022; 40:526-534. [PMID: 35707967 DOI: 10.1002/cbf.3722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Glycation is vital in terms of its damaging effect on macromolecules resulting in the formation of end products, which are highly reactive and cross-linked irreversible structures, known as advanced glycation end products (AGEs). The continuous accumulation of AGEs is associated with severe diabetes and its associated ailments. Saccharides with their reducing ends can glycate amino acid side chains of proteins, among them glucose is well-known for its potent glycating capability. However, other reducing sugars can be more reactive glycating agents than glucose. The D-ribose is a pentose sugar-containing an active aldehyde group in its open form and is responsible for affecting the biological processes of the cellular system. D-ribose, a key component of many biological molecules, is more reactive than most reducing sugars. Protein glycation by reducing monosaccharides such as D-ribose promotes the accelerated formation of AGEs that could lead to cellular impairments and dysfunctions. Also, under a physiological cellular state, the bioavailability rate of D-ribose is much higher than that of glucose in diabetes, which makes this species much more active in protein glycation as compared with D-glucose. Due to the abnormal level of D-ribose in the biological system, the glycation of proteins with D-ribose needs to be analyzed and addressed carefully. In the present study, human immunoglobulin G (IgG) was isolated and purified via affinity column chromatography. D-ribose at 10 and 100 mM concentrations was used as glycating agent, for 1-12 days of incubation at 37°C. The postglycation changes in IgG molecule were characterized by UV-visible and fluorescence spectroscopy, nitroblue tetrazolium assay, and various other physicochemical analyses for the confirmation of D-ribose mediated IgG glycation.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Khalid Al-Shaghdali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Shahnawaz Rehman
- Department of Biochemistry, S.S. Faculty of Science, Mohammad Ali Jauhar University, Rampur, India
| | - Mohd Yasir Khan
- Department of Biotechnology, School of Applied & Life Science (SALS), Uttaranchal University, Dehradun, India
| | - Zeeshan Rafi
- Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Iram Khan Tahir
- Department of Zoology, S.S. Faculty of Science, Mohammad Ali Jauhar University, Rampur, India
| | - Saif Khan
- Department of Basic Dental Sciences, College of Dental Sciences, University of Hail, Saudi Arabia
| | - Shafeeque Ahmad
- Department of Biochemistry, Al-Falah School of Medical Science and Research Centre, Al-Falah University, Dhauj, India
| | - Uzma Shahab
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Carvacrol protects against carbonyl osmolyte-induced structural modifications and aggregation to serum albumin: Insights from physicochemical and molecular interaction studies. Int J Biol Macromol 2022; 213:663-674. [PMID: 35660040 DOI: 10.1016/j.ijbiomac.2022.05.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 12/25/2022]
Abstract
The robust use of osmolytes (i.e., polyols and sugars) in the key therapeutic regimens/formulations has questioned their impact beyond the stability of therapeutic proteins as these osmolytes trigger structural alterations into proteins including misfolding and subsequent aggregation into amyloid fibrils. Therefore, the current study is the first to delineate the inhibitory effect of carvacrol (CRV) on the carbonyl osmolyte-induced aggregation as well as structural alterations to the bovine serum albumin (BSA) via a set of physicochemical as well as artificial intelligence (AI)-based molecular docking studies. Our initial findings from physicochemical investigations revealed that CRV exhibits substantial protection to BSA under carbonyl osmolyte stress as evident by the compromised hyperchromicity, Schiff's bases, carbonyl and hydroxymethyl furfural content, reduced fluorescent signals, low Rayleigh scattering and prevention of covalent modifications at Lys and Arg residues. The protection against aggregate formation by CRV was further confirmed through the reduced amyloid-specific congo red absorbance as well as fluorescent signals recorded after adding the fibril-specific extrinsic fluorophore probes (i.e., ThT and ANS). The AI-based molecular docking analysis further revealed that CRV (ΔG: -4.96 kcal/mol) competes with d-fructose (ΔG: -4.40 kcal/mol) to mask the Lys and Arg residues to restrict the osmolyte-mediated protein modifications. In conclusion, CRV exhibits substantial protective impact against carbonyl osmolyte-induced structural alterations and protein misfolding and aggregation.
Collapse
|
15
|
Dardari D, Thomas C, Laborne FX, Tourte C, Henry E, Erblang M, Bourdon S, Penfornis A, Lopes P. Impact of the Rapid Normalization of Chronic Hyperglycemia on the Receptor Activator of Nuclear Factor-Kappa B Ligand and the Osteoprotegerin System in Patients Living with Type 2 Diabetes: RANKL-GLYC Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:555. [PMID: 35454393 PMCID: PMC9029471 DOI: 10.3390/medicina58040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
The RANKL-GLYC study aims to explore the impact of the rapid correction of chronic hyperglycemia on the receptor activator of nuclear factor-kappa B ligand (RANKL) and its antagonist osteoprotegerin (OPG). RANKL and OPG are considered the main factors in the pathophysiology of Charcot neuroarthropathy, a devastating complication of the joints that remains poorly understood. The study began recruiting patients in September 2021 and ends in June 2022; the final study results are scheduled for January 2023.
Collapse
Affiliation(s)
- Dured Dardari
- Centre Hopitalier Sud Francilien, Department of Diabetes, Hôpital Sud Francilien, 9110 Corbeil-Essonnes, France;
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), Univ Evry, Université Paris Saclay, 91025 Evry, France; (C.T.); (P.L.)
| | - Claire Thomas
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), Univ Evry, Université Paris Saclay, 91025 Evry, France; (C.T.); (P.L.)
| | - Francois-Xavier Laborne
- Centre Hospitalier Sud Francilien, Unité de Recherhce Clinique, Hôpital Sud Francilien, 9110 Corbeil-Essonnes, France; (F.-X.L.); (C.T.); (E.H.)
| | - Caroline Tourte
- Centre Hospitalier Sud Francilien, Unité de Recherhce Clinique, Hôpital Sud Francilien, 9110 Corbeil-Essonnes, France; (F.-X.L.); (C.T.); (E.H.)
| | - Elodie Henry
- Centre Hospitalier Sud Francilien, Unité de Recherhce Clinique, Hôpital Sud Francilien, 9110 Corbeil-Essonnes, France; (F.-X.L.); (C.T.); (E.H.)
| | - Megane Erblang
- Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées (IRBA), Université Paris Saclay, 91000 Evry, France;
| | - Stéphanie Bourdon
- Paris-Sud Medical School, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Alfred Penfornis
- Centre Hopitalier Sud Francilien, Department of Diabetes, Hôpital Sud Francilien, 9110 Corbeil-Essonnes, France;
- Paris-Sud Medical School, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France;
| | - Philippe Lopes
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), Univ Evry, Université Paris Saclay, 91025 Evry, France; (C.T.); (P.L.)
| |
Collapse
|
16
|
Yekta R, Sadeghi L, Dehghan G. The role of non-enzymatic glycation on Tau-DNA interactions: Kinetic and mechanistic approaches. Int J Biol Macromol 2022; 207:161-168. [PMID: 35257729 DOI: 10.1016/j.ijbiomac.2022.02.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Despite the regulatory role of Tau protein in the stabilization and assembly of microtubules, this protein has an important function in the protection and stabilizing of DNA molecules in the cell nucleus. In the present study, it has been indicated that glycation of lysine residues (Lys-267, Lys-274, and Lys-280) in the microtubule-binding domain (MBD) can considerably decrease its binding affinity to DNA molecules. The structural analysis also confirmed that the decreased glycated tau-DNA complex's stability was due to structural modification of this protein after the glycation process. The study of hippocampal cells under hyperglycemic conditions showed that near to 70% of Tau proteins glycated in these cells, although the expression of Tau remained unaffected. The assessment of H3K9me2, as a marker for binding of Tau to pericentromeric heterochromatin (PCH), indicated that localization of Tau protein on PCH was remarkably decreased at high glucose conditions relative to the controls. It is suggested that increasing the structural stability of Tau protein limits the ability of this protein for DNA binding, while the molecular and physical barrier of glycated Lys residues should not be neglected.
Collapse
Affiliation(s)
- Reza Yekta
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran..
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran..
| |
Collapse
|
17
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
18
|
Physicochemical Characterization of In Vitro LDL Glycation and Its Inhibition by Ellagic Acid (EA): An In Vivo Approach to Inhibit Diabetes in Experimental Animals. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5583298. [PMID: 35097119 PMCID: PMC8791751 DOI: 10.1155/2022/5583298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
Hundreds of millions of people around the globe are afflicted by diabetes mellitus. The alteration in glucose fixation process might result into hyperglycaemia and could affect the circulating plasma proteins to undergo nonenzymatic glycation reaction. If it is unchecked, it may lead to diabetes with increase in advanced glycation end products (AGEs). Therefore, the present study was designed to inhibit the diabetes and glycation by using natural antioxidant “ellagic acid” (EA). In this study, we explored the antidiabetes and antiglycation potential of EA in both in vitro (EA at micromolar concentration) and in vivo systems. The EA concentrations of 10 and 20 mg kg−1B.W./day were administered orally for 25 days to alloxan-induced diabetic rats, a week after confirmation of stable diabetes in animals. Intriguingly, EA supplementation in diabetic rats reversed the increase in fasting blood sugar (FBS) and hemoglobin A1c (HbA1c) level. EA also showed an inhibitory role against glycation intermediates including dicarbonyls, as well as AGEs, investigated in a glycation mixture with in vitro and in vivo animal plasma samples. Additionally, EA treatment resulted in inhibition of lipid peroxidation-mediated malondialdehyde (MDA) and conjugated dienes (CD). Furthermore, EA exhibited an antioxidant property, increased the level of plasma glutathione (GSH), and also helped to decrease histological changes evaluated by histoimmunostaining of animal kidney tissues. The results from our investigation clearly indicates the antiglycative property of EA, suggesting EA as an adequate inhibitor of glycation and diabetes, which can be investigated further in preclinical settings for the treatment and management of diabetes-associated complications.
Collapse
|
19
|
Silva RG, Martins G, Nucci LB, Granero F, Figueiredo CM, Santiago P, Silva L. Antiglycation, antioxidant, antiacne, and photoprotective activities of crude extracts and triterpene saponin fraction of Sapindus saponaria L. fruits: An in vitro study. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.354430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
20
|
Glycyrrhizic Acid Scavenges Reactive Carbonyl Species and Attenuates Glycation-Induced Multiple Protein Modification: An In Vitro and In Silico Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7086951. [PMID: 34712386 PMCID: PMC8548169 DOI: 10.1155/2021/7086951] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/05/2022]
Abstract
The current study is aimed at studying the inhibitory effect of glycyrrhizic acid (GA) on D-ribose-mediated protein glycation via various physicochemical analyses and in silico approaches. Being a potent free radical scavenger and a triterpenoid saponin, GA plays a vital role in diminishing the oxidative stress and thus could be an effective inhibitor of the nonenzymatic glycation process. Our data showed that varying concentrations of GA inhibited the in vitro BSA-AGEs via inhibiting the formation of fructosamines, fluorescent AGEs, scavenging protein carbonyl and hydroxymethyl furfural (HMF) content, and protection against D-ribose-induced modification of BSA as evident by increased free Arg and Lys residues in GA-treated Gly-BSA samples. Moreover, GA also attenuated D-ribose-induced alterations in the secondary structure of BSA by protecting the α-helix and β-sheet conformers and amide-I band delocalization. In addition, GA attenuated the modification in β-cross amyloid structures of BSA and in silico molecular interaction study too showed strong binding of GA with higher number of Lys and Arg residues of BSA and binding energy (ΔG) of -8.8 Kcal/mol, when compared either to reference standard aminoguanidine (AG)-BSA complex (ΔG: -4.3 Kcal/mol) or D-ribose-BSA complex (ΔG: -5.2 Kcal/mol). Therefore, GA could be a new and favorable inhibitor of the nonenzymatic glycation process that ameliorates AGEs-related complications via attenuating the AGE formation and glycation-induced multiple protein modifications with a reduced risk of adverse effects on protein structure and functionality; hence, it could be investigated at further preclinical settings for the treatment and management of diabetes and age-associated complications.
Collapse
|
21
|
Jaunay EL, Dhillon VS, Semple SJ, Simpson BS, Ghetia M, Deo P, Fenech M. Genotoxicity of advanced glycation end products in vitro is influenced by their preparation temperature, purification, and cell exposure time. Mutagenesis 2021; 36:445-455. [PMID: 34612487 DOI: 10.1093/mutage/geab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are formed via non-enzymatic reactions between amino groups of proteins and the carbonyl groups of reducing sugars. Previous studies have shown that highly glycated albumin prepared using a glucose-bovine serum albumin (Glu-BSA) model system incubated at 60°C for 6 weeks induces genotoxicity in WIL2-NS cells at 9 days of exposure measured by the cytokinesis-block micronucleus cytome (CBMNcyt) assay. However, this AGE model system is not physiologically relevant as normal body temperature is 37°C and the degree of glycation may exceed the extent of albumin modification in vivo. We hypothesised that the incubation temperature and purification method used in these studies may cause changes to the chemical profile of the glycated albumin and may influence the extent of genotoxicity observed at 3, 6 and 9 days of exposure. We prepared AGEs generated using Glu-BSA model systems incubated at 60°C or 37°C purified using trichloroacetic acid (TCA) precipitation or ultrafiltration (UF) and compared their chemical profile (glycation, oxidation, and aggregation) and genotoxicity in WIL2-NS cells using the CBMNcyt assay after 3, 6, and 9 days of exposure. The number of micronuclei (MNi) was significantly higher for cells treated with Glu-BSA incubated at 60°C and purified via TCA (12 ± 1 MNi/1000 binucleated cells) compared to Glu-BSA incubated at 37°C and purified using UF (6 ± 1 MNi/1000 binucleated cells) after 9 days (p < 0.0001). The increase in genotoxicity observed could be explained by a higher level of protein glycation, oxidation, and aggregation of the Glu-BSA model system incubated at 60°C relative to 37°C. This study highlighted that the incubation temperature, purification method and cell exposure time are important variables to consider when generating AGEs in vitro and will enable future studies to better reflect in vivo situations of albumin glycation.
Collapse
Affiliation(s)
- Emma L Jaunay
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Varinderpal S Dhillon
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Susan J Semple
- University of South Australia, Clinical and Health Sciences, Quality Use of Medicines and Pharmacy Research Centre, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Bradley S Simpson
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Maulik Ghetia
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Permal Deo
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia
| | - Michael Fenech
- University of South Australia, Clinical and Health Sciences, Health and Biomedical Innovation, GPO Box 2471, Adelaide SA, 5001, Australia.,Faculty of Health Sciences, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
22
|
Ahmad P, Alvi SS, Iqbal J, Khan MS. Identification and evaluation of natural organosulfur compounds as potential dual inhibitors of α-amylase and α-glucosidase activity: an in-silico and in-vitro approach. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02799-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Metabolite identification of iridin in rats by using UHPLC-MS/MS and pharmacokinetic study of its metabolite irigenin. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1181:122914. [PMID: 34492510 DOI: 10.1016/j.jchromb.2021.122914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
Iridin, one of the main bioactive components isolated from Belamcanda chinensis (L.) DC, exerts various pharmacological activities, such as anti-inflammation, antioxidant, and antitumor. However, the metabolism and pharmacokinetics of iridin are still unknown. After 100 mg/kg administration of iridin orally, the plasma, urine, and fecal bio-samples from Sprague-Dawley (SD) rats were collected and detected by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The pharmacokinetics of the major metabolite irigenin (aglycon of iridin) and a total of thirteen metabolites of iridin were identified, including five metabolites in plasma, ten metabolites in urine, and six metabolites in feces. The most principal metabolic pathway of iridin was glucuronidation after demethylation and was mediated by UDP-glucuronosyltransferases (UGTs) 1A7, 1A8, 1A9 and 1A10. This study highlights the first-time investigation of the metabolism of iridin in vivo, and the pharmacokinetics of irigenin (the major metabolite of iridin) in rats. These results provide robust evidence for further research and clinical application of iridin.
Collapse
|
24
|
Wu S, Sun Y, Chen D, Liu H, Li Z, Chen M, Wang C, Cheng L, Guo Q, Peng X. The noncovalent conjugations of human serum albumin (HSA) with MS/AK and the effect on anti-oxidant capacity as well as anti-glycation activity of Monascus yellow pigments. Food Funct 2021; 12:3692-3704. [PMID: 33900309 DOI: 10.1039/d0fo03025b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monascin (MS) and ankaflavin (AK), as typical yellow lipid-soluble pigments identified from Monascus-fermented products, have been confirmed to possess diverse biological activities such as anti-oxidation, reversing diabetes, and anti-atherosclerosis, and have received increasing attention in recent years. Certainly Monascus-fermented product with a high content of MS/AK is also a concern. The current work explored interactions between MS/AK and human serum albumin (HSA) as well as their influence on the anti-oxidant properties of MS/AK. Moreover, the anti-glycation potential of Monascus-fermented products rich in MS and AK (denoted as Mps) was assessed. The results showed that the fluorescence emission of HSA was quenched by MS/AK through a static quenching mechanism, and MS-HSA and AK-HSA complexes were mainly formed by van der Waals forces and hydrophobic interactions, but AK showed a higher binding affinity than MS. Although the DPPH radical-scavenging abilities of MS-HSA and AK-HSA complexes declined, Mps significantly reduced the formation of fructosamine, α-dicarbonyl compounds and advanced glycation end products (AGEs) in the in vitro glycation model (HSA-glucose). Notably, approximately 80% of fluorescent-AGEs were suppressed by Mps at a concentration of 0.95 mg mL-1, while aminoguanidine (AG, a reference standard) caused only 65% decrease at the same concentration. Although radical scavenging and metal chelating activities could justify the observed anti-glycation activity of Mps, in-depth research on the structures of other functional compounds present in Mps except MS/AK and reaction mechanisms should be performed. Overall, the present study proved that Mps would be promising sources of food-based anti-glycation agents because of their superior inhibitory effect on AGEs.
Collapse
Affiliation(s)
- Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int J Biol Macromol 2021; 176:589-600. [PMID: 33581205 DOI: 10.1016/j.ijbiomac.2021.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the structure of a new heteropolysaccharide (MC-Pa) from Moutan Cortex (MC), and its protection on diabetic nephropathy (DN). The MC-Pa composed of D-glucose and L-arabinose (3.31:2.25) was characterized with homogeneous molecular weight of 1.64 × 105 Da, and the backbone was 4)-α-D-Glcp-(1 → 5-α-L-Araf-(1 → 3,5-α-L-Araf-(1→, branched partially at O-3 with α-L-Araf-(1 → residue with methylated-GC-MS and NMR. Furthermore, MC-Pa possessed strong antioxidant activity in vitro and inhibited the production of ROS caused by AGEs. In vivo, MC-Pa could alleviate mesangial expansion and tubulointerstitial fibrosis of DN rats in histopathology and MC-Pa could decrease significantly the serum levels of AGEs and RAGE. Western blot and immunohistochemical analysis showed that MC-Pa can reduce the expression of main protein (FN and Col IV) of extracellular-matrix, down-regulate the production of inflammatory factors (ICAM-1 and VCAM-1), and therefore regulate the pathway of TGF-β1. The above indicated that MC-Pa has an improving effect on DN.
Collapse
|
26
|
Nabi R, Alvi SS, Shah A, Chaturvedi CP, Faisal M, Alatar AA, Ahmad S, Khan MS. Ezetimibe attenuates experimental diabetes and renal pathologies via targeting the advanced glycation, oxidative stress and AGE-RAGE signalling in rats. Arch Physiol Biochem 2021:1-16. [PMID: 33508970 DOI: 10.1080/13813455.2021.1874996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The current in-vivo study was premeditated to uncover the protective role of ezetimibe (EZ) against advanced glycation endproducts (AGEs)-related pathologies in experimental diabetes. Our results showed that EZ markedly improved the altered biochemical markers of diabetes mellitus (DM) (FBG, HbA1c, insulin, microalbumin, and creatinine) and cardiovascular disease (in-vivo lipid/lipoprotein level and hepatic HMG-CoA reductase activity) along with diminished plasma carboxymethyl-lysine (CML) and renal fluorescent AGEs level. Gene expression study revealed that EZ significantly down-regulated the renal AGEs-receptor (RAGE), nuclear factor-κB (NFκB-2), transforming growth factor-β (TGF-β1), and matrix metalloproteinase-2 (MMP-2) mRNA expression, however, the neuropilin-1 (NRP-1) mRNA expression was up-regulated. In addition, EZ also maintained the redox status via decreasing the lipid peroxidation and protein-bound carbonyl content (CC) and increasing the activity of high-density lipoprotein (HDL)-associated-paraoxonase-1 (PON-1) and renal antioxidant enzymes as well as also protected renal histopathological features. We conclude that EZ exhibits antidiabetic and reno-protective properties in diabetic rats.
Collapse
Affiliation(s)
- Rabia Nabi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Arunim Shah
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Chandra P Chaturvedi
- Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Saheem Ahmad
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, India
| |
Collapse
|
27
|
Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci 2020; 254:117756. [DOI: 10.1016/j.lfs.2020.117756] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
|