1
|
Mokos D, Daniel B. Interactive 3D Objects Enhance Scientific Communication of Structural Data. Chembiochem 2025; 26:e202500036. [PMID: 39976303 PMCID: PMC11907382 DOI: 10.1002/cbic.202500036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 02/21/2025]
Abstract
In scientific communication about three-dimensional structures, creating two-dimensional representations is standard practice. These representations often suffer from the drawback of losing potential information due to dimensionality reduction. Several options exist to present, share and publish 3D figures, however based on recent publications they are not widely utilized. Here we present simple ways to preserve the three-dimensionality of the structure by the creation of a custom-made model in GLTF format that is generated in the same workflow as the conventional figures. They can be published alongside a given manuscript with minimal additional effort to the authors, but a huge impact on the communicative power of the manuscript concerning the three-dimensional features of the reported structures. The scripts we adapted and published for this purpose open up new possibilities for the illustrator and allow the viewer to access the full three-dimensionality of the published structure. In future, this can simplify the publication process of protein structures or other models and be a valuable tool for scientific communication in digital or printed form.
Collapse
Affiliation(s)
- Daniel Mokos
- Department of Structural BiologyInstitute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bastian Daniel
- Department of Structural BiologyInstitute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMedGrazAustria
| |
Collapse
|
2
|
Zheng W, Zhao G, Zhang W, Lian C, Zhang H, Hou X. iTRAQ proteome analysis reveals the underling mechanisms of foliage zinc-spraying to improve photosynthetic capacity and seed yields of Peaonia ostii 'Fengdan'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109082. [PMID: 39217824 DOI: 10.1016/j.plaphy.2024.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Zinc (Zn) deficiency is a significant nutritional limitation to crop yield globally, particularly in calcareous soil environments. Tree peony of Peaonia ostii 'Fengdan' is regarded as an oil crop due to its seeds rich in alpha-linolenic acid, a beneficial compound for health promotion. However, low seed yield remains a primary challenge in attaining sufficient seed oil from tree peony. In this study, Zn fertilization was applied to soil or foliage of P. ostii 'Fengdan' in the growth period before fruit development. Our findings reveal that foliar Zn-spraying, as opposed to soil application, proves to be a more effective method for augmenting seed yield, Zn accumulation and photosynthetic capacity in 'Fengdan'. Comparative analyses of the leaf proteome of 'Fengdan' using iTRAQ profiling under foliar Zn-spraying identified 115 differentially expressed proteins (DEPs), including 36 upregulated proteins, which likely contribute to the observed increase in seed yields of 'Fengdan' caused by foliage Zn-spraying. Specifically, Zn2+ stimulation of phosphatidylinositol signaling initiates a cascade of metabolic regulations. Firstly, ATP synthesis promotes leaf photosynthetic capacity, facilitated by improved sucrose metabolism through upregulated pullulanase and 1,4-alpha-glucan-branching enzyme. Furthermore, lipid synthesis and transport are facilitated by upregulated lipoyl synthase and plastid lipid-associated proteins. Additionally, DEPs involved in secondary metabolism are upregulated in the production of various metabolites conducive to 'Fengdan' growth. Overall, our results demonstrate that foliage Zn-spraying enhances seed yield in P. ostii 'Fengdan' by elevating Zn content and secondary metabolite synthesis in leaves, thereby augmenting leaf photosynthetic capacity and lipid synthesis. This study provides an effective way to increase seed yield of tree peony by exogenous Zn application.
Collapse
Affiliation(s)
- Wenwen Zheng
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Guodong Zhao
- Luoyang National Peony Park, Luoyang, 471000, China
| | - Wanqing Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Hongxiao Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Xiaogai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, China.
| |
Collapse
|
3
|
Costantini S, Benedetti M, Pontiggia D, Giovannoni M, Cervone F, Mattei B, De Lorenzo G. Berberine bridge enzyme-like oxidases of cellodextrins and mixed-linked β-glucans control seed coat formation. PLANT PHYSIOLOGY 2023; 194:296-313. [PMID: 37590952 DOI: 10.1093/plphys/kiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Plants have evolved various resistance mechanisms to cope with biotic stresses that threaten their survival. The BBE23 member (At5g44360/BBE23) of the Arabidopsis berberine bridge enzyme-like (BBE-l) protein family (Arabidopsis thaliana) has been characterized in this paper in parallel with the closely related and previously described CELLOX (At4g20860/BBE22). In addition to cellodextrins, both enzymes, renamed here as CELLODEXTRIN OXIDASE 2 and 1 (CELLOX2 and CELLOX1), respectively, oxidize the mixed-linked β-1→3/β-1→4-glucans (MLGs), recently described as capable of activating plant immunity, reinforcing the view that the BBE-l family includes members that are devoted to the control of the homeostasis of potential cell wall-derived damage-associated molecular patterns (DAMPs). The 2 putatively paralogous genes display different expression profiles. Unlike CELLOX1, CELLOX2 is not expressed in seedlings or adult plants and is not involved in immunity against Botrytis cinerea. Both are instead expressed in a concerted manner in the seed coat during development. Whereas CELLOX2 is expressed mainly during the heart stage, CELLOX1 is expressed at the immediately later stage, when the expression of CELLOX2 decreases. Analysis of seeds of cellox1 and cellox2 knockout mutants shows alterations in the coat structure: the columella area is smaller in cellox1, radial cell walls are thicker in both cellox1 and cellox2, and the mucilage halo is reduced in cellox2. However, the coat monosaccharide composition is not significantly altered, suggesting an alteration of the organization of the cell wall, thus reinforcing the notion that the architecture of the cell wall in specific organs is determined not only by the dynamics of the synthesis/degradation of the main polysaccharides but also by its enzymatic oxidation.
Collapse
Affiliation(s)
- Sara Costantini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
5
|
Frezzini M, Scortica A, Capone M, Narzi D, Benedetti M, Angelucci F, Mattei B, Guidoni L. Molecular dynamics simulations and kinetic measurements provide insights into the structural requirements of substrate size-dependent specificity of oligogalacturonide oxidase 1 (OGOX1). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:315-325. [PMID: 36455304 DOI: 10.1016/j.plaphy.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Oligogalacturonides (OGs) are pectin fragments released from the breakdown of the homogalacturonan during pathogenesis that act as Damage-Associated Molecular Patterns. OG-oxidase 1 (OGOX1) is an Arabidopsis berberine bridge enzyme-like (BBE-l) oligosaccharide oxidase that oxidizes OGs, impairing their elicitor activity and concomitantly releasing H2O2. The OG-oxidizing activity of OGOX1 is markedly pH-dependent, with optimum pH around 10, and is higher towards OGs with a degree of polymerization higher than two. Here, the molecular determinants of OGOX1 responsible for the binding of OGs with different lengths have been investigated through molecular dynamics simulations and enzyme kinetics studies. OGOX1 was simulated in complex with OGs with different degree of polymerization such as di-, tri-, tetra- and penta-galacturonide, in water solution at alkaline pH. Our simulations revealed that, among the four OGOX1/OG combinations, the penta-galacturonide (OG5) showed the best conformation in the active site to be efficiently oxidized by OGOX1. The optimal conformation can be stabilized by salt-bridges formed between the carboxyl groups of OG5 and five positively charged amino acids of OGOX1, highly conserved in all OGOX paralogs. Our results suggest that these interactions limit the mobility of OG5 as well as longer OGs, contributing to maintain the terminal monomer of OGs in the optimal orientation in order to be oxidized by the enzyme. In accordance with these results, the enzyme efficiency (Kcat/KM) of OGOX1 on OG5 (40.04) was found to be significantly higher than that on OG4 (13.05) and OG3 (0.6).
Collapse
Affiliation(s)
- Mario Frezzini
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Matteo Capone
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| |
Collapse
|
6
|
Scortica A, Capone M, Narzi D, Frezzini M, Scafati V, Giovannoni M, Angelucci F, Guidoni L, Mattei B, Benedetti M. A molecular dynamics-guided mutagenesis identifies two aspartic acid residues involved in the pH-dependent activity of OG-OXIDASE 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:171-182. [PMID: 34800821 DOI: 10.1016/j.plaphy.2021.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
During the infection, plant cells secrete different OG-oxidase (OGOX) paralogs, defense flavoproteins that oxidize the oligogalacturonides (OGs), homogalacturonan fragments released from the plant cell wall that act as Damage Associated Molecular Patterns. OGOX-mediated oxidation inactivates their elicitor nature, but on the other hand makes OGs less hydrolysable by microbial endo-polygalacturonases (PGs). Among the different plant defense responses, apoplastic alkalinization can further reduce the degrading potential of PGs by boosting the oxidizing activity of OGOXs. Accordingly, the different OGOXs so far characterized showed an optimal activity at pH values greater than 8. Here, an approach of molecular dynamics (MD)-guided mutagenesis succeeded in identifying the amino acids responsible for the pH dependent activity of OGOX1 from Arabidopsis thaliana. MD simulations indicated that in alkaline conditions (pH 8.5), the residues Asp325 and Asp344 are engaged in the formation of two salt bridges with Arg327 and Lys415, respectively, at the rim of enzyme active site. According to MD analysis, the presence of such ionic bonds modulates the size and flexibility of the cavity used to accommodate the OGs, in turn affecting the activity of OGOX1. Based on functional properties of the site-directed mutants OGOX1.D325A and OGOX.D344A, we demonstrated that Asp325 and Asp344 are major determinants of the alkaline-dependent activity of OGOX1.
Collapse
Affiliation(s)
- Anna Scortica
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Matteo Capone
- Dept. of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Daniele Narzi
- Dept. of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Mario Frezzini
- Dept. of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Moira Giovannoni
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesco Angelucci
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Leonardo Guidoni
- Dept. of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Benedetta Mattei
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Manuel Benedetti
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
7
|
Macheroux P. Current topics in flavins and flavoproteins (Proceedings of the 20th nternational symposium on flavins and flavoproteins). Arch Biochem Biophys 2021; 707:108908. [PMID: 33984324 DOI: 10.1016/j.abb.2021.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Macheroux
- Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|