1
|
Markel M, Tse WH, De Leon N, Jank M, Albrechtsen J, Kahnamoui Zadeh S, Patel D, Ozturk A, Lacher M, Wagner R, Keijzer R. Experimental congenital diaphragmatic hernia features an alteration of DNA sensing targets cGAS and STING. Pediatr Res 2024; 96:1666-1672. [PMID: 38816442 DOI: 10.1038/s41390-024-03277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The pathogenesis of congenital diaphragmatic hernia (CDH) depends on multiple factors. Activation of the DNA-sensing cyclic-GMP-AMP-synthase (cGAS) and Stimulator-of-Interferon-Genes (STING) pathway by double-stranded DNA (dsDNA) links environmental stimuli and inflammation. We hypothesized that nitrofen exposure alters cGAS and STING in human bronchial epithelial cells and fetal rat lungs. METHODS We used the Quant-IT™-PicoGreen™ assay to assess dsDNA concentration in BEAS-2B cells after 24 h of nitrofen-exposure and performed immunofluorescence of cGAS/STING. We used nitrofen to induce CDH and harvested control and CDH lungs at embryonic day E15, E18 and E21 for cGAS/STING immunofluorescence, RT-qPCR and RNA-Scope™ in-situ-hybridization (E18, E21). RESULTS We found a higher concentration of dsDNA following nitrofen treatment. Nitrofen-exposure to BEAS-2B cells increased cGAS and STING protein abundance. cGAS abundance was higher in nitrofen lungs at E15, E18 and E21. RNA-Scope in-situ-hybridization showed higher cGAS and STING expression in E18 and E21 lungs. RT-qPCR revealed higher mRNA expression levels of STING in E21 nitrofen-induced lungs. CONCLUSION Our data suggest that nitrofen-exposure increases dsDNA content which leads to stimulation of the cGAS/STING pathway in human BEAS-2B cells and the nitrofen rat model of CDH. Consequently, DNA sensing and the cGAS-STING-pathway potentially contribute to abnormal lung development in CDH. IMPACT STATEMENT We found an alteration of DNA sensing targets cGAS and STING in human BEAS-2B cells and experimental congenital diaphragmatic hernia with higher protein abundance and mRNA expression in cells and lung sections of nitrofen-treated rat pups. This is the first study to investigate DNA sensing, a potential link between environmental stimuli and inflammation, in experimental CDH. Our study extends the knowledge on the pathogenesis of experimental CDH.
Collapse
Affiliation(s)
- Moritz Markel
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Wai Hei Tse
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nolan De Leon
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Marietta Jank
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatric Surgery, Medical Faculty Mannheim, University of Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jaida Albrechtsen
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Shana Kahnamoui Zadeh
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Daywin Patel
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Arzu Ozturk
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Wagner
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Keijzer
- Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Figueira RL, Antounians L, Zani-Ruttenstock E, Khalaj K, Zani A. Fetal lung regeneration using stem cell-derived extracellular vesicles: A new frontier for pulmonary hypoplasia secondary to congenital diaphragmatic hernia. Prenat Diagn 2022; 42:364-372. [PMID: 35191057 DOI: 10.1002/pd.6117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
The poor outcomes of babies with congenital diaphragmatic hernia (CDH) are directly related to pulmonary hypoplasia, a cosndition characterized by impaired lung development. Although the pathogenesis of pulmonary hypoplasia is not fully elucidated, there is now evidence that CDH patients have missing or dysregulated microRNAs (miRNAs) that regulate lung development. A prenatal therapy that supplements these missing/dysregulated miRNAs could be a strategy to rescue normal lung development. Extracellular vesicles (EVs), also known as exosomes when of small dimensions, are lipid-bound nanoparticles that can transfer their heterogeneous cargo (proteins, lipids, small RNAs) to target cells to induce biological responses. Herein, we review all studies that show evidence for stem cell-derived EVs as a regenerative therapy to rescue normal development in CDH fetal lungs. Particularly, we report studies showing that administration of EVs derived from amniotic fluid stem cells (AFSC-EVs) to models of pulmonary hypoplasia promotes fetal lung growth and maturation via transfer of miRNAs that are known to regulate lung developmental processes. We also describe that stem cell-derived EVs exert effects on vascular remodeling, thus possibly preventing postnatal pulmonary hypertension. Finally, we discuss future perspectives and challenges to translate this promising stem cell EV-based therapy to clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada
| |
Collapse
|
3
|
Miura M, Imai K, Tsuda H, Miki R, Tano S, Ito Y, Hirako-Takamura S, Moriyama Y, Ushida T, Iitani Y, Nakano-Kobayashi T, Toyokuni S, Kajiyama H, Kotani T. Prenatal Molecular Hydrogen Administration Ameliorates Several Findings in Nitrofen-Induced Congenital Diaphragmatic Hernia. Int J Mol Sci 2021; 22:ijms22179500. [PMID: 34502408 PMCID: PMC8431162 DOI: 10.3390/ijms22179500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress plays a pathological role in pulmonary hypoplasia and pulmonary hypertension in congenital diaphragmatic hernia (CDH). This study investigated the effect of molecular hydrogen (H2), an antioxidant, on CDH pathology induced by nitrofen. Sprague-Dawley rats were divided into three groups: control, CDH, and CDH + hydrogen-rich water (HW). Pregnant dams of CDH + HW pups were orally administered HW from embryonic day 10 until parturition. Gasometric evaluation and histological, immunohistochemical, and real-time polymerase chain reaction analyses were performed. Gasometric results (pH, pO2, and pCO2 levels) were better in the CDH + HW group than in the CDH group. The CDH + HW group showed amelioration of alveolarization and pulmonary artery remodeling compared with the CDH group. Oxidative stress (8-hydroxy-2′-deoxyguanosine-positive-cell score) in the pulmonary arteries and mRNA levels of protein-containing pulmonary surfactant that protects against pulmonary collapse (surfactant protein A) were significantly attenuated in the CDH + HW group compared with the CDH group. Overall, prenatal H2 administration improved respiratory function by attenuating lung morphology and pulmonary artery thickening in CDH rat models. Thus, H2 administration in pregnant women with diagnosed fetal CDH might be a novel antenatal intervention strategy to reduce newborn mortality due to CDH.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Deuterium Oxide/pharmacology
- Disease Models, Animal
- Female
- Hernias, Diaphragmatic, Congenital/drug therapy
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/pathology
- Hydrogen/metabolism
- Hydrogen/pharmacology
- Hypertension, Pulmonary/metabolism
- Lung/pathology
- Male
- Organogenesis/drug effects
- Phenyl Ethers/adverse effects
- Phenyl Ethers/pharmacology
- Pregnancy
- Pulmonary Artery
- Pulmonary Surfactants/metabolism
- Rats
- Rats, Sprague-Dawley
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Mayo Miura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
| | - Hiroyuki Tsuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya First Hospital, 3-35 Michisita-Cho, Nakamura-Ku, Nagoya 453-8511, Japan; (H.T.); (Y.I.)
| | - Rika Miki
- Laboratory of Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan;
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
| | - Yumiko Ito
- Department of Obstetrics and Gynecology, Japanese Red Cross Nagoya First Hospital, 3-35 Michisita-Cho, Nakamura-Ku, Nagoya 453-8511, Japan; (H.T.); (Y.I.)
| | - Shima Hirako-Takamura
- Department of Obstetrics and Gynecology, Kasugai Municipal Hospital, Kasugai 486-8510, Japan;
| | - Yoshinori Moriyama
- Department of Obstetrics and Gynecology, Fujita Health University Graduate School of Medicine, Toyoake 470-1192, Japan;
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
| | - Yukako Iitani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
| | - Tomoko Nakano-Kobayashi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan;
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8550, Japan; (M.M.); (K.I.); (S.T.); (T.U.); (Y.I.); (T.N.-K.); (H.K.)
- Center for Maternal-Neonatal Care, Division of Perinatology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya 466-8560, Japan
- Correspondence: ; Tel.: +81-52-744-2261; Fax: +81-52-744-2268
| |
Collapse
|