1
|
Pang L, Chen J, Li W, Chatzisymeon E, Xu K, Yang P. Particle size of zero-valent iron affects the risks from antibiotic resistance genes in waste activated sludge during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137785. [PMID: 40043404 DOI: 10.1016/j.jhazmat.2025.137785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
Zero-valent iron (ZVI) is the promising enhancer for sludge anaerobic digestion (AD) performance and for mitigating the proliferation of antibiotic resistance genes (ARGs). However, concerns about its size effects in shifting the behavior and risk of ARGs in sludge, during the AD process. Here, the metagenomics-based profile of ARGs, along with their potential (pathogenic) hosts in sludge were investigated, during mesophilic AD enhanced by ZVI with three different sizes. Results showed that the size of ZVI affected the profiles of ARGs, with nano-ZVI (nZVI, 50 nm) demonstrating the most significant reduction in abundance (by 45.0 %) and diversity (by 8.6 %) of total ARGs, followed by micron-ZVI (150 μm) and iron scrap (1 mm). Similar trends were also observed for high-risk ARGs, pathogens, and potential pathogenic hosts for ARGs. Notably, nZVI achieved the greatest reductions in the abundance of risk ARGs and potential pathogenic hosts (superbugs) by 58.8 % and 53.9 %, respectively. Correlation and redundancy analyses revealed that, the size of ZVI induced concentration differences in ammonium nitrogen, pH, carbonaceous matters, iron, and potential microbial hosts were the main reasons for the variation in the risk of ARGs. Moreover, the down-regulation of genes involved in oxidative stress contributed to the lower risk of ARGs in the three ZVI groups, especially in nZVI. This study provides insights into AD processes of solid wastes using ZVI enhancers.
Collapse
Affiliation(s)
- Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Jianglin Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Wenqian Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Kailin Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Vishnevskaya A, Bashilov A, Osipenko S, Kireev A, Sinetova M, Nikolaev E, Kostyukevich Y. Metabolomic characterization of a new strain of microalgae by GC-MS method with the introduction of a deuterium label. Biochimie 2025; 231:23-34. [PMID: 39645069 DOI: 10.1016/j.biochi.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Microalgae are active producers of various compounds, including toxic substances. However, their metabolism is very diverse and insufficiently known. We demonstrate an approach that includes growing a new strain of cyanobacterium Leptolyngbya sp. (IPPAS B-1204) on an isotopically labeled medium (D2O) and evaluating the metabolomic composition of these microorganisms after deuterium uptake. Despite the low resolution of the GC-MS method, the interpretation of the obtained spectra allowed us to find out not only the amount of the embedded isotope label but also to assume the position in the structure where the label is embedded. We present the results of reliably detecting more than 30 compounds with isotope labels belonging to various classes of biological compounds produced by this cyanobacterium, revealing the metabolic pathways of entry of this label. We also demonstrate that the synthesis of unsaturated fatty acids is suppressed under the growth on D2O medium. In addition, we found an isotopic effect in the chromatographic separation of isotopically labeled compounds in gas chromatography. These data can be used in the future both for the identification of compounds and the analysis of the biosynthesis pathways of secondary biologically active compounds and in the analysis of the production of isotopically labeled standards of compounds.
Collapse
Affiliation(s)
- Anna Vishnevskaya
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Anton Bashilov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia; Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Sergey Osipenko
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Albert Kireev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Maria Sinetova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Yury Kostyukevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.
| |
Collapse
|
3
|
Wasim M, Shaheen S, Fatima B, Hussain D, Hassan F, Tahreem S, Riaz MM, Yar A, Majeed S, Najam-Ul-Haq M. Non-enzymatic electrochemical detection of sarcosine in serum of prostate cancer patients by CoNiWBO/rGO nanocomposite. Sci Rep 2024; 14:24240. [PMID: 39414878 PMCID: PMC11484907 DOI: 10.1038/s41598-024-74628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Selective and sensitive sarcosine detection is crucial due to its recent endorsement as a prostate cancer (PCa) biomarker in clinical diagnosis. The reduced graphene oxide-cobalt nickel tungsten boron oxides (CoNiWBO/rGO) nanocomposite is developed as a non-enzymatic electrochemical sensor for sarcosine detection in PCa patients' serum. CoNiWBO/rGO is synthesized by the chemical reduction method via a one-pot reduction method followed by calcination at 500 °C under a nitrogen environment for 2 h and characterized by UV-Vis, XRD, TGA, and SEM. CoNiWBO/rGO is then deposited on a glassy carbon electrode, and sarcosine sensing parameters are optimized, including concentration and pH. This non-enzymatic sensor is employed to directly determine sarcosine in serum samples. Differential pulse voltammetry (DPV) and linear sweep voltammetry (LSV) are employed to monitor the electrochemical behavior where sarcosine binding leads to oxidation. Chronoamperometric studies show the stability of the developed sensor. The results demonstrate a wide linear range from 0.1 to 50 µM and low limits of detection, i.e., 0.04 µM and 0.07 µM using DPV and LSV respectivel. Moreover, the calculated recovery of sarcosine in human serum of prostate cancer patients is 78-96%. The developed electrochemical sensor for sarcosine detection can have potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Muhammad Wasim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sana Shaheen
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fatima Hassan
- Department of Mechatronics, College of Electrical and Mechanical Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Shajeea Tahreem
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | | | - Ahmad Yar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
4
|
Hying ZT, Miller TJ, Loh CY, Bazurto JV. Glycine betaine metabolism is enabled in Methylorubrum extorquens PA1 by alterations to dimethylglycine dehydrogenase. Appl Environ Microbiol 2024; 90:e0209023. [PMID: 38534142 PMCID: PMC11267896 DOI: 10.1128/aem.02090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Low nutrient availability is a key characteristic of the phyllosphere (the aerial surface of plants). Phyllospheric bacteria utilize a wide array of carbon sources generated by plant hosts. Glycine betaine (GB) is a plant-derived compound that can be metabolized by certain members of the phyllosphere microbiota. Metabolism of glycine betaine generates formaldehyde, an intermediate of methylotrophic metabolism, leading us to investigate how the ubiquitous plant colonizing bacterium Methylorubrum extorquens PA1 might metabolize GB encountered in its native environment. M. extorquens PA1 cannot utilize GB as a sole carbon source. Through suppressor mutation analysis, we show that M. extorquens PA1 encodes a conserved GB utilization pathway that can be activated by single point mutations conferring GB utilization as a carbon source. We identified the gene cluster encoding the GB catabolic enzymes and found that gene expression was induced in the presence of GB. We show that utilization of GB is conserved among representative Methylobacterium species and generates the one-carbon metabolism intermediate formaldehyde, which M. extorquens utilizes as a source of energy. Our results support a model where suppressor mutations in Mext_3745 or ftsH (Mext_4840) prevent the degradation of the dimethylglycine dehydrogenase subunit DgcB by the membrane integral protease FtsH, conferring the ability to utilize GB by either (i) restoring stable membrane topology of DgcB or (ii) decreasing FtsH protease activity, respectively. Both mutations alleviate the bottleneck at the second step of GB degradation catalyzed by DgcAB.IMPORTANCEOvercoming low nutrient availability is a challenge many bacteria encounter in the environment. Facultative methylotrophs are able to utilize one-carbon and multi-carbon compounds as carbon and energy sources. The utilization of plant-derived glycine betaine (GB) represents a possible source of multi-carbon and one-carbon substrates. The metabolism of glycine betaine produces formaldehyde and glycine, which may be used simultaneously by facultative methylotrophs. However, the genes required for the utilization of GB in the ubiquitous plant-associated bacterium Methylorubrum extorquens have yet to be identified or described. Our work identifies and validates the genes required for glycine betaine metabolism in M. extorquens and shows that it directly intersects with methylotrophic metabolism through the production of formaldehyde.
Collapse
Affiliation(s)
- Zachary T. Hying
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| | - Tyler J. Miller
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| | - Chin Yi Loh
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| | - Jannell V. Bazurto
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
He L, Sui Y, Che Y, Liu L, Liu S, Wang X, Cao G. New Insights into the Genetic Basis of Lysine Accumulation in Rice Revealed by Multi-Model GWAS. Int J Mol Sci 2024; 25:4667. [PMID: 38731885 PMCID: PMC11083390 DOI: 10.3390/ijms25094667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Lysine is an essential amino acid that cannot be synthesized in humans. Rice is a global staple food for humans but has a rather low lysine content. Identification of the quantitative trait nucleotides (QTNs) and genes underlying lysine content is crucial to increase lysine accumulation. In this study, five grain and three leaf lysine content datasets and 4,630,367 single nucleotide polymorphisms (SNPs) of 387 rice accessions were used to perform a genome-wide association study (GWAS) by ten statistical models. A total of 248 and 71 common QTNs associated with grain/leaf lysine content were identified. The accuracy of genomic selection/prediction RR-BLUP models was up to 0.85, and the significant correlation between the number of favorable alleles per accession and lysine content was up to 0.71, which validated the reliability and additive effects of these QTNs. Several key genes were uncovered for fine-tuning lysine accumulation. Additionally, 20 and 30 QTN-by-environment interactions (QEIs) were detected in grains/leaves. The QEI-sf0111954416 candidate gene LOC_Os01g21380 putatively accounted for gene-by-environment interaction was identified in grains. These findings suggested the application of multi-model GWAS facilitates a better understanding of lysine accumulation in rice. The identified QTNs and genes hold the potential for lysine-rich rice with a normal phenotype.
Collapse
Affiliation(s)
- Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yao Sui
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yanru Che
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lihua Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Guangping Cao
- Hainan Key Laboratory of Crop Genetics and Breeding, Institute of Food Crops, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| |
Collapse
|
6
|
Gracia Carmona O, Lahham M, Poliak P, Goj D, Frießer E, Wallner S, Macheroux P, Oostenbrink C. Understanding the riddle of amine oxidase flavoenzyme reactivity on the stereoisomers of N-methyl-dopa and N-methyl-tyrosine. J Mol Recognit 2024; 37:e3068. [PMID: 37968575 PMCID: PMC11475575 DOI: 10.1002/jmr.3068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023]
Abstract
Enzymes are usually stereospecific against chiral substrates, which is commonly accepted for the amine oxidase family of enzymes as well. However, the FsqB (fumisoquin biosynthesis gene B) enzyme that belongs to the family of sarcosine oxidase and oxidizes L-N-methyl-amino acids, shows surprising activity for both enantiomers of N-methyl-dopa. The aim of this study is to understand the mechanism behind this behavior. Primary docking experiments showed that tyrosine and aspartate residues (121 and 315 respectively) are located on the ceiling of the active site of FsqB and may play a role in fixing the N-methyl-dopa via its catechol moiety and allowing both stereoisomers of this substrate to be in close proximity of the N5 atom of the isoalloxazine ring of the cofactor. Three experimental approaches were used to prove this hypothesis which are: (1) studying the oxidative ability of the variants Y121F and D315A on N-methyl-dopa substrates in comparison with N-methyl-tyrosine substrates; (2) studying the FsqB WT and variants catalyzed biotransformation via high-performance liquid chromatography (HPLC); (3) molecular dynamics simulations to characterize the underlying mechanisms of the molecular recognition. First, we found that the chemical characteristics of the catechol moiety of N-methyl-dopa are important to explain the differences between N-methyl-dopa and N-methyl-tyrosine. Furthermore, we found that Y121 and D315 are specific in FsqB and not found in the model enzyme sarcosine oxidase. The on-bench and theoretical mutagenesis studies show that Y121 residue has a major role in fixing the N-methyl-dopa substrates close to the N5 atom of the isoalloxazine ring of the cofactor. Simultaneously, D315 has a supportive role in this mechanism. Jointly, the experimental and theoretical approaches help to solve the riddle of FsqB amine oxidase substrate specificity.
Collapse
Affiliation(s)
- Oriol Gracia Carmona
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Majd Lahham
- Institute of BiochemistryGraz University of TechnologyGrazAustria
- Department of Biochemistry and Microbiology, Faculty of PharmacyArab University for Science and TechnologyHamaSyria
| | - Peter Poliak
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dominic Goj
- Institute of BiochemistryGraz University of TechnologyGrazAustria
| | - Eva Frießer
- Institute of BiochemistryGraz University of TechnologyGrazAustria
| | - Silvia Wallner
- Institute of BiochemistryGraz University of TechnologyGrazAustria
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyGrazAustria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, Department of Material Sciences and Process EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
- Christian Doppler Laboratory Molecular Informatic in the BiosciencesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
7
|
Hardy MLM, Lakhiani D, Morris MB, Day ML. Proline and Proline Analogues Improve Development of Mouse Preimplantation Embryos by Protecting Them against Oxidative Stress. Cells 2023; 12:2640. [PMID: 37998375 PMCID: PMC10670569 DOI: 10.3390/cells12222640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with tetramethylrhodamine methyl ester and 2',7'-dichlorofluorescein diacetate showed that the culture of embryos in the presence of Pro, or either of these analogues, reduced mitochondrial activity and reactive oxygen species (ROS), respectively, indicating potential mechanisms by which embryo development is improved. Inhibition of the Pro metabolism enzyme, proline oxidase, by tetrahydro-2-furoic-acid prevented these reductions and concomitantly prevented the improved development. The ways in which Pro, PA and L4T reduce mitochondrial activity and ROS appear to differ, despite their structural similarity. Specifically, the results are consistent with Pro reducing ROS by reducing mitochondrial activity while PA and L4T may be acting as ROS scavengers. All three may work to reduce ROS by contributing to the GSH pool. Overall, our results indicate that reduction in mitochondrial activity and oxidative stress are potential mechanisms by which Pro and its analogues act to improve pre-implantation embryo development.
Collapse
|
8
|
Eggbauer B, Schrittwieser JH, Kerschbaumer B, Macheroux P, Kroutil W. Regioselective Biocatalytic C4-Prenylation of Unprotected Tryptophan Derivatives. Chembiochem 2022; 23:e202200311. [PMID: 35770709 PMCID: PMC9540666 DOI: 10.1002/cbic.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Regioselective carbon-carbon bond formation belongs to the challenging tasks in organic synthesis. In this context, C-C bond formation catalyzed by 4-dimethylallyltryptophan synthases (4-DMATSs) represents a possible tool to regioselectively synthesize C4-prenylated indole derivatives without site-specific preactivation and circumventing the need of protection groups as used in chemical synthetic approaches. In this study, a toolbox of 4-DMATSs to produce a set of 4-dimethylallyl tryptophan and indole derivatives was identified. Using three wild-type enzymes as well as variants, various C5-substituted tryptophan derivatives as well as N-methyl tryptophan were successfully prenylated with conversions up to 90 %. Even truncated tryptophan derivatives like tryptamine and 3-indole propanoic acid were regioselectively prenylated in position C4. The acceptance of C5-substituted tryptophan derivatives was improved up to 5-fold by generating variants (e. g. T108S). The feasibility of semi-preparative prenylation of selected tryptophan derivatives was successfully demonstrated on 100 mg scale at 15 mM substrate concentration, allowing to reduce the previously published multistep chemical synthetic sequence to just a single step.
Collapse
Affiliation(s)
- Bettina Eggbauer
- Institute of ChemistryUniversity of Graz NAWI GrazHeinrichstraße 288010GrazAustria
| | | | - Bianca Kerschbaumer
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyPetersgasse 10–128010GrazAustria
| | - Wolfgang Kroutil
- Institute of ChemistryUniversity of Graz NAWI GrazHeinrichstraße 288010GrazAustria
- BioTechMed Graz8010GrazAustria
- Field of Excellence BioHealth University of Graz8010GrazAustria
| |
Collapse
|
9
|
Boysen AK, Durham BP, Kumler W, Key RS, Heal KR, Carlson L, Groussman RD, Armbrust EV, Ingalls AE. Glycine betaine uptake and metabolism in marine microbial communities. Environ Microbiol 2022; 24:2380-2403. [PMID: 35466501 PMCID: PMC9321204 DOI: 10.1111/1462-2920.16020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
Glycine betaine (GBT) is a compatible solute in high concentrations in marine microorganisms. As a component of labile organic matter, GBT has complex biochemical potential as a substrate for microbial use that is unconstrained in the environment. Here we determine the uptake kinetics and metabolic fate of GBT in two natural microbial communities in the North Pacific characterized by different nitrate concentrations. Dissolved GBT had maximum uptake rates of 0.36 and 0.56 nM h−1 with half‐saturation constants of 79 and 11 nM in the high nitrate and low nitrate stations respectively. During multiday incubations, most GBT taken into cells was retained as a compatible solute. Stable isotopes derived from the added GBT were also observed in other metabolites, including choline, carnitine and sarcosine, suggesting that GBT was used for biosynthesis and for catabolism to pyruvate and ammonium. Where nitrate was scarce, GBT was primarily metabolized via demethylation to glycine. Gene transcript data were consistent with SAR11 using GBT as a source of methyl groups to fuel the methionine cycle. Where nitrate concentrations were higher, more GBT was partitioned for lipid biosynthesis by both bacteria and eukaryotic phytoplankton. Our data highlight unexpected metabolic pathways and potential routes of microbial metabolite exchange.
Collapse
Affiliation(s)
- Angela K Boysen
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Bryndan P Durham
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - William Kumler
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rebecca S Key
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - Katherine R Heal
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Laura Carlson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Ryan D Groussman
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Shahal T, Segev E, Konstantinovsky T, Marcus Y, Shefer G, Pasmanik-Chor M, Buch A, Ebenstein Y, Zimmet P, Stern N. Deconvolution of the epigenetic age discloses distinct inter-personal variability in epigenetic aging patterns. Epigenetics Chromatin 2022; 15:9. [PMID: 35255955 PMCID: PMC8900303 DOI: 10.1186/s13072-022-00441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epigenetic age can now be extrapolated from one of several epigenetic clocks, which are based on age-related changes in DNA methylation levels at specific multiple CpG sites. Accelerated aging, calculated from the discrepancy between the chronological age and the epigenetic age, has shown to predict morbidity and mortality rate. We assumed that deconvolution of epigenetic age to its components could shed light on the diversity of epigenetic, and by inference, on inter-individual variability in the causes of biological aging. RESULTS Using the Horvath original epigenetic clock, we identified several CpG sites linked to distinct genes that quantitatively explain much of the inter-personal variability in epigenetic aging, with CpG sites related to secretagogin and malin being the most variable. We show that equal epigenetic age in different subjects can result from variable contribution size of the same CpG sites to the total epigenetic age. In a healthy cohort, the most variable CpG sites are responsible for accelerated and decelerated epigenetic aging, relative to chronological age. CONCLUSIONS Of the 353 CpG sites that form the basis for the Horvath epigenetic age, we have found the CpG sites that are responsible for accelerated and decelerated epigenetic aging in healthy subjects. However, the relative contribution of each site to aging varies between individuals, leading to variable personal aging patterns. Our findings pave the way to form personalized aging cards allowing the identification of specific genes related to CpG sites, as aging markers, and perhaps treatment of these targets in order to hinder undesirable age drifting.
Collapse
Affiliation(s)
- Tamar Shahal
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Elad Segev
- Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Thomas Konstantinovsky
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Yonit Marcus
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Gabi Shefer
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Buch
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University School of Medicine, Melbourne, Australia
| | - Naftali Stern
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Macheroux P. Current topics in flavins and flavoproteins (Proceedings of the 20th nternational symposium on flavins and flavoproteins). Arch Biochem Biophys 2021; 707:108908. [PMID: 33984324 DOI: 10.1016/j.abb.2021.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Macheroux
- Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|