1
|
Latent potential of current plant diagnostics for detection of sugarcane diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
2
|
Dyussembayev K, Sambasivam P, Bar I, Brownlie JC, Shiddiky MJA, Ford R. Biosensor Technologies for Early Detection and Quantification of Plant Pathogens. Front Chem 2021; 9:636245. [PMID: 34150716 PMCID: PMC8207201 DOI: 10.3389/fchem.2021.636245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plant pathogens are a major reason of reduced crop productivity and may lead to a shortage of food for both human and animal consumption. Although chemical control remains the main method to reduce foliar fungal disease incidence, frequent use can lead to loss of susceptibility in the fungal population. Furthermore, over-spraying can cause environmental contamination and poses a heavy financial burden on growers. To prevent or control disease epidemics, it is important for growers to be able to detect causal pathogen accurately, sensitively, and rapidly, so that the best practice disease management strategies can be chosen and enacted. To reach this goal, many culture-dependent, biochemical, and molecular methods have been developed for plant pathogen detection. However, these methods lack accuracy, specificity, reliability, and rapidity, and they are generally not suitable for in-situ analysis. Accordingly, there is strong interest in developing biosensing systems for early and accurate pathogen detection. There is also great scope to translate innovative nanoparticle-based biosensor approaches developed initially for human disease diagnostics for early detection of plant disease-causing pathogens. In this review, we compare conventional methods used in plant disease diagnostics with new sensing technologies in particular with deeper focus on electrochemical and optical biosensors that may be applied for plant pathogen detection and management. In addition, we discuss challenges facing biosensors and new capability the technology provides to informing disease management strategies.
Collapse
Affiliation(s)
- Kazbek Dyussembayev
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Prabhakaran Sambasivam
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Jeremy C. Brownlie
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Muhammad J. A. Shiddiky
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
3
|
Ali Q, Ahmar S, Sohail MA, Kamran M, Ali M, Saleem MH, Rizwan M, Ahmed AM, Mora-Poblete F, do Amaral Júnior AT, Mubeen M, Ali S. Research advances and applications of biosensing technology for the diagnosis of pathogens in sustainable agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9002-9019. [PMID: 33464530 DOI: 10.1007/s11356-021-12419-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 05/06/2023]
Abstract
Plant diseases significantly impact the global economy, and plant pathogenic microorganisms such as nematodes, viruses, bacteria, fungi, and viroids may be the etiology for most infectious diseases. In agriculture, the development of disease-free plants is an important strategy for the determination of the survival and productivity of plants in the field. This article reviews biosensor methods of disease detection that have been used effectively in other fields, and these methods could possibly transform the production methods of the agricultural industry. The precise identification of plant pathogens assists in the assessment of effective management steps for minimization of production loss. The new plant pathogen detection methods include evaluation of signs of disease, detection of cultured organisms, or direct examination of contaminated tissues through molecular and serological techniques. Laboratory-based approaches are costly and time-consuming and require specialized skills. The conclusions of this review also indicate that there is an urgent need for the establishment of a reliable, fast, accurate, responsive, and cost-effective testing method for the detection of field plants at early stages of growth. We also summarized new emerging biosensor technologies, including isothermal amplification, detection of nanomaterials, paper-based techniques, robotics, and lab-on-a-chip analytical devices. However, these constitute novelty in the research and development of approaches for the early diagnosis of pathogens in sustainable agriculture.
Collapse
Affiliation(s)
- Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, People's Republic of China
| | - Sunny Ahmar
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Aamir Sohail
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| | - Mohsin Ali
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Hamzah Saleem
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Agha Mushtaque Ahmed
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, 3460000, Talca, Chile.
| | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Mustansar Mubeen
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
4
|
Khater M, de la Escosura-Muñiz A, Merkoçi A. Biosensors for plant pathogen detection. Biosens Bioelectron 2016; 93:72-86. [PMID: 27818053 DOI: 10.1016/j.bios.2016.09.091] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review.
Collapse
Affiliation(s)
- Mohga Khater
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; On leave from Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
5
|
Zeng L, Zhou J, Li B, Xing D. A high-sensitivity optical device for the early monitoring of plant pathogen attack via the in vivo detection of ROS bursts. FRONTIERS IN PLANT SCIENCE 2015; 6:96. [PMID: 25767474 PMCID: PMC4341508 DOI: 10.3389/fpls.2015.00096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/05/2015] [Indexed: 05/20/2023]
Abstract
Biotic stressors, especially pathogenic microorganisms, are rather difficult to detect. In plants, one of the earliest cellular responses following pathogen infection is the production of reactive oxygen species (ROS). In this study, a novel optical device for the early monitoring of Pseudomonas attack was developed; this device measures the ROS level via oxidation-sensitive 2', 7'-dichlorodihydrofluorescein diacetate (H2DCFDA)-mediated fluorescence, which could provide early monitoring of attacks by a range of plant pathogen; ROS bursts were detected in vivo in Arabidopsis thaliana with higher sensitivity and accuracy than those of a commercial luminescence spectrophotometer. Additionally, the DCF fluorescence truly reflected early changes in the ROS level, as indicated by an evaluation of the H2O2 content and the tight association between the ROS and Pseudomonas concentration. Moreover, compared with traditional methods for detecting plant pathogen attacks based on physiological and biochemical measurements, our proposed technique also offers significant advantages, such as low cost, simplicity, convenient operation and quick turnaround. These results therefore suggest that the proposed optical device could be useful for the rapid monitoring of attacks by plant pathogen and yield results considerably earlier than the appearance of visual changes in plant morphology or growth.
Collapse
Affiliation(s)
| | | | | | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal UniversityGuangzhou, China
| |
Collapse
|
6
|
Wei J, Liu H, Liu F, Zhu M, Zhou X, Xing D. Miniaturized paper-based gene sensor for rapid and sensitive identification of contagious plant virus. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22577-84. [PMID: 25412341 DOI: 10.1021/am506695g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant viruses cause significant production and economic losses in the agricultural industry worldwide. Rapid and early identification of contagious plant viruses is an essential prerequisite for the effective control of further spreading of infection. In this work, we describe a miniaturized paper-based gene sensor for the rapid and sensitive identification of a contagious plant virus. Our approach makes use of hybridization-mediated target capture based on a miniaturized lateral flow platform and gold nanoparticle colorimetric probes. The captured colorimetric probes on the test line and control line of the gene sensor produce characteristic red bands, enabling visual detection of the amplified products within minutes without the need for sophisticated instruments or the multiple incubation and washing steps performed in most other assays. Quantitative analysis is realized by recording the optical intensity of the test line. The sensor was used successfully for the identification of banana bunchy top virus (BBTV). The detection limit was 0.13 aM of gene segment, which is 10 times higher than that of electrophoresis and provides confirmation of the amplified products. We believe that this simple, rapid, and sensitive bioactive platform has great promise for warning against plant diseases in agricultural production.
Collapse
Affiliation(s)
- Jitao Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Ding C, Zheng Q, Wang N, Yue Q. An electrochemiluminescence strategy based on aptamers and nanoparticles for the detection of cancer cells. Anal Chim Acta 2012. [PMID: 23176741 DOI: 10.1016/j.aca.2012.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A PCR (polymerase chain reaction)-free electrochemiluminescence (ECL) strategy based on aptamers and ECL nanoprobes was developed for rapid collection and detection of Ramos cells. The ECL nanoprobes consisted of gold nanoparticles (AuNPs), linker DNA and tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled signal DNA. The linker DNA and signal DNA were modified on the surface of the AuNPs through AuS bonds. The linker DNA can hybridize partly with the aptamers loaded on the magnetic beads to construct the magnetic biocomplex. In the presence of the cancer cells, the aptamers conjugated with the cancer cells with higher affinity. The ECL nanoprobe released from the biocomplex and subsequently hybridized with the capture DNA modified on the Au electrode. The ECL intensity of the TBR loaded on the nanoprobes directly reflected the amount of the cancer cells. With the use of the developed ECL probe, a limit of detection as low as 50 Ramos cells per mL could be achieved. The proposed methods based on ECL should have wide applications in the diagnosis of cancers due to their high sensitivity, simplicity and low cost.
Collapse
Affiliation(s)
- Caifeng Ding
- Key Laboratory of Bioanalytical Chemistry, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | | | | | | |
Collapse
|
9
|
Zhu X, Zhen Y, Mi T, Yu Z. Detection of Prorocentrum minimum (Pavillard) Schiller with an electrochemiluminescence-molecular probe assay. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:502-511. [PMID: 22282220 DOI: 10.1007/s10126-012-9431-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
The occurrence of harmful algal blooms (HABs) caused by Prorocentrum minimum (Pavillard) Schiller is a crucial subject in the study of HABs. An electrochemiluminescence-molecular probe assay (ECL-MP) was developed to qualitatively and quantitatively detect P. minimum. It was based on the sandwich hybridization integrated with a nuclease protection assay (NPA-SH) and improved by electrochemiluminescence (ECL). An ECL analyzer was established in this study, and it was shown that this analyzer was stable and highly sensitive, with a detection range of 0.4 pmol to 4 nmol Ru(bpy)(3)Cl(2)·6H(2)O under optimal reaction conditions of 1.0 V, 1.0 mA, 1.5 mol·L(-1) TPrA, and pH 7.4. The optimal amount of magnetic beads for separation of labeled NPA probes in a 20-μL hybridization mixture was 4 μg. The ECL counts per second was linear with the number of P. minimum cells in a range of 6.25 × 10(2) to 4 × 10(4), and there was no significant difference between ECL-MP and microscopy, with a 95% confidence level (t test) when individual, mixed cultures and field samples were treated. This study provides a convenient method for fast and accurate detection of P. minimum in the marine environment.
Collapse
Affiliation(s)
- Xia Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | | | | | | |
Collapse
|
10
|
Ding C, Wei S, Liu H. Electrochemiluminescent determination of cancer cells based on aptamers, nanoparticles, and magnetic beads. Chemistry 2012; 18:7263-8. [PMID: 22532513 DOI: 10.1002/chem.201104019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/09/2012] [Indexed: 01/29/2023]
Abstract
Herein we report a polymerase chain reaction (PCR)-free electrochemiluminescence (ECL) approach that uses ECL nanoprobes for the determination of cancer cells with high sensitivity. The ECL nanoprobe consists of gold nanoparticles (AuNPs), linker DNA, and tris(2,2'-bipyridyl)ruthenium (TBR)-labeled signal DNA. The linker DNA and signal DNA were modified on the surface of the AuNPs through Au-S bonds. The linker DNA can partly hybridize with the aptamers of cancer cells loaded onto the magnetic beads (MB1) to construct the magnetic biocomplexes. In the presence of the cancer cells, the aptamers conjugated with the cancer cells with higher affinity. The ECL nanoprobe was released from the biocomplexes and subsequently hybridized with the capture DNA loaded onto another magnetic bead (MB2) to form the magnetic nanocomposite. The nanocomposites can be easily separated and firmly attached to an electrode on account of their excellent magnetic properties. The ECL intensity of the TBR loaded onto the nanocomposites directly reflected the amount of cancer cells. By using cell lines of Burkitt's lymphoma (Ramos cells) as a model, the ECL response was proportional to the cell concentration in the range from 5 to 100 cells ml(-1); a limit of detection as low as 5 cells ml(-1) of Ramos cells could be achieved. The proposed method described here is ideal for the diagnosis of cancers due to its high sensitivity, simplicity, and low cost.
Collapse
Affiliation(s)
- Caifeng Ding
- State Key Laboratory Base of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | | | | |
Collapse
|
11
|
Duan R, Zhou X, Xing D. Electrochemiluminescence Biobarcode Method Based on Cysteamine−Gold Nanoparticle Conjugates. Anal Chem 2010; 82:3099-103. [DOI: 10.1021/ac100018z] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruixue Duan
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
12
|
Su Q, Xing D, Zhou X. Magnetic beads based rolling circle amplification-electrochemiluminescence assay for highly sensitive detection of point mutation. Biosens Bioelectron 2009; 25:1615-21. [PMID: 20034781 DOI: 10.1016/j.bios.2009.11.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 01/16/2023]
Abstract
The identification of point mutations is particularly essential in the fields of medical diagnosis and prognosis of many pathogenic and genetic diseases. In this study, an rolling circle amplification (RCA) based electrochemiluminescence (ECL) assay for highly sensitive point mutation detection was developed. In the assay, an allele-discriminating padlock probe was designed for targeting the sequence in the p53 oncogene locus. A circular template generated by enzymatic ligation upon the recognition of a point mutation (CGT to CAT) on the oncogene could be amplified isothermally by Phi 29 DNA polymerase. The elongated products, containing hundreds of copies of the circular DNA template sequence, were hybridized with Ru(bpy)(3)(2+) (TBR)-tagged probes and then captured onto streptavidin-coated paramagnetic beads. The resulting products were analyzed by magnetic bead based ECL platform. As low as 2 amol of mutated strands was detected by this assay, which could be attributed to the high amplification efficiency of Phi 29 DNA polymerase and current magnetic bead based ECL detection platform. In addition, the positive mutation detection was achieved with a wild-type to mutant ratio of 10000:1, due to the high fidelity of DNA ligase in differentiating mismatched bases at the ligation site. It is demonstrated that this proposed method provides a highly sensitive and specific approach for point mutation detection.
Collapse
Affiliation(s)
- Qiang Su
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
13
|
Rapid Detection of Tobacco Mosaic Virus from Crude Samples on an Oscillatory-flow Reverse Transcription-Polymerase Chain Reaction Microfluidics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1016/s1872-2040(08)60127-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zhu X, Lin Z, Chen L, Qiu B, Chen G. A sensitive and specific electrochemiluminescent sensor for lead based on DNAzyme. Chem Commun (Camb) 2009:6050-2. [DOI: 10.1039/b911191c] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zhou X, Xing D, Zhu D, Jia L. Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity. Anal Chem 2008; 81:255-61. [DOI: 10.1021/ac801914b] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Debin Zhu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
16
|
Affiliation(s)
- Wujian Miao
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| |
Collapse
|
17
|
Zhu D, Tang Y, Xing D, Chen WR. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method. Anal Chem 2008; 80:3566-71. [PMID: 18386909 PMCID: PMC5978678 DOI: 10.1021/ac0713306] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.
Collapse
Affiliation(s)
- Debin Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Yabing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | - Wei R. Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
- Department of Engineering and Physics, College of Mathematics and Science, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| |
Collapse
|
18
|
European Food Safety Authority (EFSA). Pest risk assessment made by France on Banana bunchy top virus (BBTV) considered by France as harmful in French overseas departments of French Guiana, Guadeloupe, Martinique and Réunion ‐ Scientific Opinion of the Panel on Plant Health. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|