1
|
Luo X, Zhang J, Gao Y, Pan W, Yang Y, Li X, Chen L, Wang C, Wang Y. Emerging roles of i-motif in gene expression and disease treatment. Front Pharmacol 2023; 14:1136251. [PMID: 37021044 PMCID: PMC10067743 DOI: 10.3389/fphar.2023.1136251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
As non-canonical nucleic acid secondary structures consisting of cytosine-rich nucleic acids, i-motifs can form under certain conditions. Several i-motif sequences have been identified in the human genome and play important roles in biological regulatory functions. Due to their physicochemical properties, these i-motif structures have attracted attention and are new targets for drug development. Herein, we reviewed the characteristics and mechanisms of i-motifs located in gene promoters (including c-myc, Bcl-2, VEGF, and telomeres), summarized various small molecule ligands that interact with them, and the possible binding modes between ligands and i-motifs, and described their effects on gene expression. Furthermore, we discussed diseases closely associated with i-motifs. Among these, cancer is closely associated with i-motifs since i-motifs can form in some regions of most oncogenes. Finally, we introduced recent advances in the applications of i-motifs in multiple areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang Wang
- *Correspondence: Chang Wang, ; Yuqing Wang,
| | | |
Collapse
|
2
|
Gong X, Lin X, Wang S, Ji D, Shu B, Huang ZS, Li D. Regulation of c-Kit gene transcription selectively by bisacridine derivative through promoter dual i-motif structures. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194912. [PMID: 36754277 DOI: 10.1016/j.bbagrm.2023.194912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND c-Kit protein is a signal transduction protein involved in multiple signal pathways, which play an important role in a variety of cellular events such as cell proliferation, apoptosis and differentiation. Special DNA secondary structures on the promoter of c-Kit gene, including G-quadruplex and i-motif structures, could act as "molecular switch" for gene transcriptional regulation, which are potentially important target for development of new anti-cancer drugs. METHODS We screened and evaluated the effect of compounds on c-Kit through several experiments, including SPR, FRET, CD, MST, NMR, dual-luciferase reporter assay, Western blot, qPCR, immunofluorescence, MTT assay, colony formation, cell scrape, cell apoptosis, cell cycle analysis, and transwell assay. RESULTS After extensive screening, we found that bisacridine derivative B05 had selective binding and stabilization to dual i-motif structures on c-Kit gene promoter, which could down-regulate c-Kit gene transcription and translation, resulting in inhibition of cell proliferation and metastasis. B05 exhibited potent anti-tumor activity on HGC-27 cells, and strongly suppressed tumor growth in HGC-27 xenograft mice model. CONCLUSIONS B05 could interact with c-Kit promoter dual i-motif structures with excellent selectivity, which make it possible for selective regulation of gene transcription and translation. B05 could be further developed for selective anti-cancer agent targeting c-Kit promoter i-motifs. GENERAL SIGNIFICANCE i-Motifs on different proto-oncogene promoters are diversified, and especially binding of dual i-motifs on the same promoter simultaneously could significantly down-regulate gene transcription with decreased dosage, and therefore increasing the selectivity. This new strategy shed bight light on development of selective DNA-targeting ligands.
Collapse
Affiliation(s)
- Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Xiaomin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China.
| |
Collapse
|
3
|
Gao T, Luo Y, Li W, Cao Y, Pei R. Progress in the isolation of aptamers to light-up the dyes and the applications. Analyst 2020; 145:701-718. [DOI: 10.1039/c9an01825e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in the selection of aptamers to light-up the dyes and the related applications are reviewed.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
4
|
pH-driven conformational switch between non-canonical DNA structures in a C-rich domain of EGFR promoter. Sci Rep 2019; 9:1210. [PMID: 30718769 PMCID: PMC6362134 DOI: 10.1038/s41598-018-37968-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
EGFR is an oncogene that encodes for a trans-membrane tyrosine kinase receptor. Its mis-regulation is associated to several human cancers that, consistently, can be treated by selective tyrosine kinase inhibitors. The proximal promoter of EGFR contains a G-rich domain located at 272 bases upstream the transcription start site. We previously proved it folds into two main interchanging G-quadruplex structures, one of parallel and one of hybrid topology. Here we present the first evidences supporting the ability of the complementary C-rich strand (EGFR-272_C) to assume an intramolecular i-Motif (iM) structure that, according to the experimental conditions (pH, presence of co-solvent and salts), can coexist with a different arrangement we referred to as a hairpin. The herein identified iM efficiently competes with the canonical pairing of the two complementary strands, indicating it as a potential novel target for anticancer therapies. A preliminary screening for potential binders identified some phenanthroline derivatives as able to target EGFR-272_C at multiple binding sites when it is folded into an iM.
Collapse
|
5
|
Kudrev AG. Scheme of the Complex Formation of DNA Telomeric Sequence with TMPyP4 Porphyrine. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218120198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Sedghi Masoud S, Nagasawa K. i-Motif-Binding Ligands and Their Effects on the Structure and Biological Functions of i-Motif. Chem Pharm Bull (Tokyo) 2018; 66:1091-1103. [DOI: 10.1248/cpb.c18-00720] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shadi Sedghi Masoud
- Department of Life Science and Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology
| | - Kazuo Nagasawa
- Department of Life Science and Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology
| |
Collapse
|
7
|
Ovsepyan GK, Kudrev AG, Shumilova GI, Starikova AA, Semeikin AS, Pendin AA. Protolytic Properties of Water-Soluble Magnesium 5,10,15,20-Tetra(1-methylpyridin-1-ium-4-yl)porphyrinate Tetraperchlorate MgTMPyP4. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Structural Inhomogeneity in Electrolyte Solutions: The Calcium Perchlorate–Water System. J SOLUTION CHEM 2017. [DOI: 10.1007/s10953-017-0662-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Kshirsagar R, Khan K, Joshi MV, Hosur RV, Muniyappa K. Probing the Potential Role of Non-B DNA Structures at Yeast Meiosis-Specific DNA Double-Strand Breaks. Biophys J 2017; 112:2056-2074. [PMID: 28538144 DOI: 10.1016/j.bpj.2017.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022] Open
Abstract
A plethora of evidence suggests that different types of DNA quadruplexes are widely present in the genome of all organisms. The existence of a growing number of proteins that selectively bind and/or process these structures underscores their biological relevance. Moreover, G-quadruplex DNA has been implicated in the alignment of four sister chromatids by forming parallel guanine quadruplexes during meiosis; however, the underlying mechanism is not well defined. Here we show that a G/C-rich motif associated with a meiosis-specific DNA double-strand break (DSB) in Saccharomyces cerevisiae folds into G-quadruplex, and the C-rich sequence complementary to the G-rich sequence forms an i-motif. The presence of G-quadruplex or i-motif structures upstream of the green fluorescent protein-coding sequence markedly reduces the levels of gfp mRNA expression in S. cerevisiae cells, with a concomitant decrease in green fluorescent protein abundance, and blocks primer extension by DNA polymerase, thereby demonstrating the functional significance of these structures. Surprisingly, although S. cerevisiae Hop1, a component of synaptonemal complex axial/lateral elements, exhibits strong affinity to G-quadruplex DNA, it displays a much weaker affinity for the i-motif structure. However, the Hop1 C-terminal but not the N-terminal domain possesses strong i-motif binding activity, implying that the C-terminal domain has a distinct substrate specificity. Additionally, we found that Hop1 promotes intermolecular pairing between G/C-rich DNA segments associated with a meiosis-specific DSB site. Our results support the idea that the G/C-rich motifs associated with meiosis-specific DSBs fold into intramolecular G-quadruplex and i-motif structures, both in vitro and in vivo, thus revealing an important link between non-B form DNA structures and Hop1 in meiotic chromosome synapsis and recombination.
Collapse
Affiliation(s)
- Rucha Kshirsagar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Krishnendu Khan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Mamata V Joshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ramakrishna V Hosur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
10
|
Heydari E, Raoof JB, Ojani R, Bagheryan Z. SiO2 nanoparticles modified CPE as a biosensor for determination of i-motif DNA/Tamoxifen interaction. Int J Biol Macromol 2016; 89:421-7. [DOI: 10.1016/j.ijbiomac.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/30/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
|
11
|
|
12
|
Alba JJ, Sadurní A, Gargallo R. Nucleic Acid i-Motif Structures in Analytical Chemistry. Crit Rev Anal Chem 2016; 46:443-54. [DOI: 10.1080/10408347.2016.1143347] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joan Josep Alba
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Sadurní
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Raimundo Gargallo
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Kudrev AG. Cooperative binding of 2,2'-bipyridine into polynucleotide poly(A)-poly(U-) in an alkaline aqueous solution. Biopolymers 2016; 99:621-7. [PMID: 23447022 DOI: 10.1002/bip.22227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 11/08/2022]
Abstract
UV absorption data analysis has been used to evaluate equilibrium constants of the pH-induced interaction of 2,2'-Bipy with polyadenylnic-polyuridylic acid in aqueous solution. The conditional probabilities hard model has been adopted in treatment of concentration diagrams calculated by the soft modelling-based Multivariate Curve Resolution-Alternating Least Squares approach. Intrinsic binding constant (lgKg = 1.93), and the cooperativity parameter (ω = 340), were calculated as the best fit. The plot of the experimental binding constant versus 2,2'-Bipy equilibrium concentration shows two modes of ligand with polymer interactions. The equilibrium hard model correctly reproduced the binding constant variations observed in the experiment. The results indicated that ligand binding in two steps is governed by a cooperative process, that is, the enhancement of deprotonated structure stability. It would appear that proposed calculation approach can be used in future combined hard modelling theoretical and soft modelling experimental works.
Collapse
Affiliation(s)
- Andrei G Kudrev
- Department of Chemistry, St. Petersburg State University, 198504, Universitetskii pr. 26, St. Petersburg, Russia.
| |
Collapse
|
14
|
Halder S, Krishnan Y. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices. NANOSCALE 2015; 7:10008-10012. [PMID: 25990365 DOI: 10.1039/c5nr01158b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here we tune the pH sensitivity of a DNA-based conformational switch, called the I-switch, to yield a set of fluorescent pH sensitive nanodevices with a collective, expanded pH sensing regime from 5.3 to 7.5. The expanded pH regime of this new family of I-switches originates from a dramatic improvement in the overall percentage signal change in response to pH of these nanodevices.
Collapse
Affiliation(s)
- Saheli Halder
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bangalore 560 065, India
| | | |
Collapse
|
15
|
Davidian AG, Kudrev AG, Myund LA, Khlynova OS, Khripun MK. Structure of aqueous electrolyte solutions estimated by near infrared spectroscopy and chemometric analysis of spectral data. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363214100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Day HA, Pavlou P, Waller ZAE. i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 2014; 22:4407-18. [PMID: 24957878 DOI: 10.1016/j.bmc.2014.05.047] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine-cytosine(+) base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.
Collapse
Affiliation(s)
- Henry A Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Pavlos Pavlou
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
17
|
Kudrev AG. Calculation of equilibrium formation constants of complexes with a polydentate oligomer. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363214030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Benabou S, Aviñó A, Eritja R, González C, Gargallo R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 2014. [DOI: 10.1039/c4ra02129k] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest research on fundamental aspects of i-motif structures is reviewed with special attention to their hypothetical rolein vivo.
Collapse
Affiliation(s)
- S. Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| | - A. Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - R. Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - C. González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid, Spain
| | - R. Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| |
Collapse
|
19
|
Calculation of cooperativity and equilibrium constants of ligands binding to G-quadruplex DNA in solution. Talanta 2013; 116:541-7. [DOI: 10.1016/j.talanta.2013.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022]
|
20
|
Kudrev AG. Cooperativity during binding of a ligand to a multidentate oligomer. POLYMER SCIENCE SERIES A 2013. [DOI: 10.1134/s0965545x13090022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
David’yan AG, Kudrev AG, Myund LA, Khripun MK. Structure of aqueous solutions of group IIIA metals perchlorates by near infrared spectroscopy. RUSS J GEN CHEM+ 2013. [DOI: 10.1134/s107036321303002x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Escaja N, Viladoms J, Garavís M, Villasante A, Pedroso E, González C. A minimal i-motif stabilized by minor groove G:T:G:T tetrads. Nucleic Acids Res 2012; 40:11737-47. [PMID: 23042679 PMCID: PMC3526289 DOI: 10.1093/nar/gks911] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The repetitive DNA sequences found at telomeres and centromeres play a crucial role in the structure and function of eukaryotic chromosomes. This role may be related to the tendency observed in many repetitive DNAs to adopt non-canonical structures. Although there is an increasing recognition of the importance of DNA quadruplexes in chromosome biology, the co-existence of different quadruplex-forming elements in the same DNA structure is still a matter of debate. Here we report the structural study of the oligonucleotide d(TCGTTTCGT) and its cyclic analog d<pTCGTTTCGTT>. Both sequences form dimeric quadruplex structures consisting of a minimal i-motif capped, at both ends, by a slipped minor groove-aligned G:T:G:T tetrad. These mini i-motifs, which do not exhibit the characteristic CD spectra of other i-motif structures, can be observed at neutral pH, although they are more stable under acidic conditions. This finding is particularly relevant since these oligonucleotide sequences do not contain contiguous cytosines. Importantly, these structures resemble the loop moiety adopted by an 11-nucleotide fragment of the conserved centromeric protein B (CENP-B) box motif, which is the binding site for the CENP-B.
Collapse
Affiliation(s)
- Núria Escaja
- Departament de Química Orgànica and IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Kudrev AG. Model of cytosine-, thymine-containing oligodeoxyribonucleotide protonation in solution. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912030104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Ni Y, Gu Y, Kokot S. Interpreting Analytical Chemistry Data: Recent Advances in Curve Resolution with the Aid of Chemometrics. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.655657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|