1
|
Li S, Duan Y, Zhu W, Cheng S, Hu W. Sensing Interfaces Engineering for Organic Thin Film Transistors-Based Biosensors: Opportunities and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412379. [PMID: 39252633 DOI: 10.1002/adma.202412379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Organic thin film transistors (OTFTs) enable rapid and label-free high-sensitivity detection of target analytes due to their low cost, large-area processing, biocompatibility, and inherent signal amplification. At the same time, the freedom of synthesis, tailorability, and functionalization of organic semiconductor materials and their ability to be combined with flexible substrates make them one of the ideal platforms for biosensing. However, OTFTs-based biosensors still face significant challenges, such as unexpected surface adsorption, disordered conformation, inhomogeneous graft density, and flexibility of probe molecules that biological sensing probes would face during immobilization. In this review, efficient immobilization strategies based on OTFTs biological sensing probes developed in the last 5 years are highlighted. First, the biosensors are classified according to their sensing interface. Second, a comprehensive discussion of the types of biological sensing probes is presented. Third, three commonly used methods for immobilizing biological sensing probes and their challenges are briefly described. Finally, the applications of OTFTs-based biosensors for liquid phase detection are summarized. This review provides a comprehensive and timely review of optimization in sensing interface engineering so that efficient immobilization of biological sensing probes with sensing interfaces will contribute to the development of high-performance OTFTs-based biosensors.
Collapse
Affiliation(s)
- Siyu Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuchen Duan
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Cheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Martino S, Tammaro C, Misso G, Falco M, Scrima M, Bocchetti M, Rea I, De Stefano L, Caraglia M. microRNA Detection via Nanostructured Biochips for Early Cancer Diagnostics. Int J Mol Sci 2023; 24:7762. [PMID: 37175469 PMCID: PMC10178165 DOI: 10.3390/ijms24097762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
MicroRNA (miRNA) are constituted of approximately 22 nucleotides and play an important role in the regulation of many physiological functions and diseases. In the last 10 years, an increasing interest has been recorded in studying the expression profile of miRNAs in cancer. Real time-quantitative polymerase chain reaction (RT-qPCR), microarrays, and small RNA sequencing represent the gold standard techniques used in the last 30 years as detection methods. The advent of nanotechnology has allowed the fabrication of nanostructured biosensors which are widely exploited in the diagnostic field. Nanostructured biosensors offer many advantages: (i) their small size allows the construction of portable, wearable, and low-cost products; (ii) the large surface-volume ratio enables the loading of a great number of biorecognition elements (e.g., probes, receptors); and (iii) direct contact of the recognition element with the analyte increases the sensitivity and specificity inducing low limits of detection (LOD). In this review, the role of nanostructured biosensors in miRNA detection is explored, focusing on electrochemical and optical sensing. In particular, four types of nanomaterials (metallic nanoparticles, graphene oxide, quantum dots, and nanostructured polymers) are reported for both detection strategies with the aim to show their distinct properties and applications.
Collapse
Affiliation(s)
- Sara Martino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
| | - Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| | - Ilaria Rea
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Luca De Stefano
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80138 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (C.T.); (M.F.); (M.B.); (M.C.)
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy;
| |
Collapse
|
3
|
Abdul Rashid JI, Yusof NA, Abdullah J, Shomiad Shueb RH. Strategies for the preparation of non-amplified and amplified genomic dengue gene samples for electrochemical DNA biosensing applications. RSC Adv 2021; 12:1-10. [PMID: 35424522 PMCID: PMC8978653 DOI: 10.1039/d1ra06753b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
The application of electrochemical DNA biosensors in real genomic sample detection is challenging due to the existence of complex structures and low genomic concentrations, resulting in inconsistent and low current signals. This work highlights strategies for the treatment of non-amplified and amplified genomic dengue virus gene samples based on real samples before they can be used directly in our DNA electrochemical sensing system, using methylene blue (MB) as a redox indicator. The main steps in this study for preparing non-amplified cDNA were cDNA conversion, heat denaturation, and sonication. To prepare amplified cDNA dengue virus genomic samples using an RT-PCR approach, we optimized a few parameters, such as the annealing temperature, sonication time, and reverse to forward (R/F) primer concentration ratio. We discovered that the generated methylene blue (MB) signals during the electrochemical sensing of non-amplified and amplified samples differ due to the different MB binding affinities based on the sequence length and base composition. The findings show that our developed electrochemical DNA biosensor successfully discriminates MB current signals in the presence and absence of the target genomic dengue virus, indicating that both samples were successfully treated. This work also provides interesting information about the critical factors in the preparation of genomic gene samples for developing miniaturized PCR-based electrochemical sensing applications in the future. We also discuss the limitations and provide suggestions related to using redox-indicator-based electrochemical biosensors to detect real genomic nucleic acid genes.
Collapse
Affiliation(s)
- Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia Sungai Besi Camp 57000 Kuala Lumpur Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Rafidah Hanim Shomiad Shueb
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia 16150 Kubang Kerian Kelantan Malaysia
| |
Collapse
|
4
|
Li P, Zhang Y, Gong P, Liu Y, Feng W, Yang H. Photoinduced atom transfer radical polymerization combined with click chemistry for highly sensitive detection of tobacco mosaic virus RNA. Talanta 2021; 235:122803. [PMID: 34517661 DOI: 10.1016/j.talanta.2021.122803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
An electrochemical biosensor for highly sensitive detection of tobacco mosaic virus (TMV) RNA (tRNA) based on click chemistry and photoinduced atom transfer radical polymerization (photoATRP) is developed for the first time. Herein, tRNA is recognized and captured by hairpin DNA immobilized on the gold electrode surface by Au-S self-assembly. Propyl 2-bromoisobutyrate (PBIB), a photoATRP initiator containing an alkyne group, is conjugated to the azide group of hairpin DNA via a Cu(I)-catalyzed azidoalkyl cyclization reaction (CuAAC). Under the irradiation of 470 nm blue light, photoATRP is activated by the photoredox catalyst (eosin Y, EY), resulting in the formation of a large number of electroactive probes (ferrocenylmethyl methacrylate, FMMA), which significantly amplifies the signal. Under the optimal experimental parameters, the strategy has a wide linear detection (0.1 pM-10 nM) (R2 = 0.995) with a limit of detection (LOD) as low as 3.5 fM. In addition, the biosensor also exhibited good selectivity for mismatched bases, excellent stability and reproducibility. Moreover, satisfactory result was achieved when the biosensor was applied to the detection of tRNA from healthy rehmannia total RNA extracts, which demonstrates the great potential of the method in the practical detection of TMV.
Collapse
Affiliation(s)
- Peipei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yaping Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pengfei Gong
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Weisheng Feng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
5
|
Lin X, Lian X, Luo B, Huang XC. A highly sensitive and stable electrochemical HBV DNA biosensor based on ErGO-supported Cu-MOF. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Xu L, Wen Y, Pandit S, Mokkapati VRSS, Mijakovic I, Li Y, Ding M, Ren S, Li W, Liu G. Graphene-based biosensors for the detection of prostate cancer protein biomarkers: a review. BMC Chem 2019; 13:112. [PMID: 31508598 PMCID: PMC6720397 DOI: 10.1186/s13065-019-0611-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the sixth most common cancer type in the world, which causes approximately 10% of total cancer fatalities. The detection of protein biomarkers in body fluids is the key topic for the diagnosis and prognosis of PC. Highly sensitive screening of PC is the most effective approach for reducing mortality. Thus, there are a growing number of literature that recognizes the importance of new technologies for early diagnosis of PC. Graphene is playing an important role in the biosensor field with remarkable physical, optical, electrochemical and magnetic properties. Many recent studies demonstrated the potential of graphene materials for sensitive detection of protein biomarkers. In this review, the graphene-based biosensors toward PC analysis are mainly discussed in two groups: Firstly, novel biosensor interfaces were constructed through the modification of graphene materials onto sensor surfaces. Secondly, ingenious signal amplification strategies were developed using graphene materials as catalysts or carriers. Graphene-based biosensors have exhibited remarkable performance with high sensitivities, wide detection ranges, and long-term stabilities.
Collapse
Affiliation(s)
- Li Xu
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China.,2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Yanli Wen
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Santosh Pandit
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Venkata R S S Mokkapati
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden
| | - Ivan Mijakovic
- 2Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 41126 Gothenburg, Sweden.,3The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Yan Li
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Min Ding
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Shuzhen Ren
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Wen Li
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| | - Gang Liu
- 1Laboratory of Biometrory, Division of Chemistry and Ionizing Radiation Measurement Technology, Shanghai Institute of Measurement and Testing Technology, Shanghai, 201203 People's Republic of China
| |
Collapse
|
7
|
de Castro ACH, Kochi LT, Moço ACR, Coimbra RS, Oliveira GC, Cuadros-Orellana S, Madurro JM, Brito-Madurro AG. A new genosensor for meningococcal meningitis diagnosis using biological samples. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3940-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Smith DA, Newbury LJ, Drago G, Bowen T, Redman JE. Electrochemical detection of urinary microRNAs via sulfonamide-bound antisense hybridisation. SENSORS AND ACTUATORS. B, CHEMICAL 2017; 253:335-341. [PMID: 29200659 PMCID: PMC5614097 DOI: 10.1016/j.snb.2017.06.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Altered serum and plasma microRNA (miRNA) expression profiles have been observed in numerous human diseases, with a number of studies describing circulating miRNA biomarkers for cancer diagnosis, prognosis and response to treatment, and recruitment to clinical trials for miRNA-based drug therapy already underway. Electrochemical detection of biomarkers in urine has several significant advantages over circulating biomarker analysis including safety, cost, speed and ease of conversion to the point of care environment. Consequently, much current research is underway to identify urinary miRNA biomarkers for a variety of pathologies including prostate and bladder malignancies, and renal disorders. We describe here a robust method capable of electrochemical detection of human urinary miRNAs at femtomolar concentrations using a complementary DNA-modified glassy carbon electrode. A miR-21-specific DNA hybridisation probe was immobilised onto a glassy carbon electrode modified by sulfonic acid deposition and subsequent chlorination. In our pilot system, the presence of synthetic mature miR-21 oligonucleotides increased resistance at the probe surface to electron transfer from the ferricyanide/ferrocyanide electrolyte. Response was linear for 10 nM-10 fM miR-21, with a limit of detection of 20 fM, and detection discriminated between miR-21, three point-mutated miR-21 sequences, and miR-16. We then demonstrated similar sensitivity and reproducibility of miR-21 detection in urine samples from 5 human control subjects. Our protocol provides a platform for future high-throughput screening of miRNA biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Daniel A. Smith
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
| | - Lucy J. Newbury
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
| | - Guido Drago
- Gwent Electronic Materials Ltd, Monmouth House, Mamhilad Pk Est, Pontypool NP4 0HZ, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
| | - James E. Redman
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Museum Place, Cardiff CF10 3BG, UK
- Corresponding author at: School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
9
|
Rashid JIA, Yusof NA. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Hajihosseini S, Nasirizadeh N, Hejazi MS, Yaghmaei P. An electrochemical DNA biosensor based on Oracet Blue as a label for detection of Helicobacter pylori. Int J Biol Macromol 2016; 91:911-7. [DOI: 10.1016/j.ijbiomac.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022]
|
11
|
Yang Y, Gao F, Cai X, Yuan X, He S, Gao F, Guo H, Wang Q. β-Cyclodextrin functionalized graphene as a highly conductive and multi-site platform for DNA immobilization and ultrasensitive sensing detection. Biosens Bioelectron 2015; 74:447-53. [DOI: 10.1016/j.bios.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
|
12
|
An ultrasensitive DNA biosensor based on covalent immobilization of probe DNA on fern leaf-like α-Fe2O3 and chitosan Hybrid film using terephthalaldehyde as arm-linker. Biosens Bioelectron 2015; 72:175-81. [DOI: 10.1016/j.bios.2015.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 01/31/2023]
|
13
|
Yang L, Li X, Li X, Yan S, Ren Y, Wang M, Liu P, Dong Y, Zhang C. [Cu(phen)2](2+) acts as electrochemical indicator and anchor to immobilize probe DNA in electrochemical DNA biosensor. Anal Biochem 2015; 492:56-62. [PMID: 26403602 DOI: 10.1016/j.ab.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
We demonstrate a novel protocol for sensitive in situ label-free electrochemical detection of DNA hybridization based on copper complex ([Cu(phen)2](2+), where phen = 1,10-phenanthroline) and graphene (GR) modified glassy carbon electrode. Here, [Cu(phen)2](2+) acted advantageously as both the electrochemical indicator and the anchor for probe DNA immobilization via intercalative interactions between the partial double helix structure of probe DNA and the vertical aromatic groups of phen. GR provided large density of docking site for probe DNA immobilization and increased the electrical conductivity ability of the electrode. The modification procedure was monitored by electrochemical impedance spectroscopy (EIS). Square-wave voltammetry (SWV) was used to explore the hybridization events. Under the optimal conditions, the designed electrochemical DNA biosensor could effectively distinguish different mismatch degrees of complementary DNA from one-base mismatch to noncomplementary, indicating that the biosensor had high selectivity. It also exhibited a reasonable linear relationship. The oxidation peak currents of [Cu(phen)2](2+) were linear with the logarithm of the concentrations of complementary target DNA ranging from 1 × 10(-12) to 1 × 10(-6) M with a detection limit of 1.99 × 10(-13) M (signal/noise = 3). Moreover, the stability of the electrochemical DNA biosensor was also studied.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xiaoyu Li
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xi Li
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Songling Yan
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yinna Ren
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Mengmeng Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Peng Liu
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yulin Dong
- Department of Chemistry, School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Chaocan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
14
|
Oliveira N, Souza E, Ferreira D, Zanforlin D, Bezerra W, Borba MA, Arruda M, Lopes K, Nascimento G, Martins D, Cordeiro M, Lima-Filho J. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences. SENSORS 2015; 15:15562-77. [PMID: 26140346 PMCID: PMC4541844 DOI: 10.3390/s150715562] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses.
Collapse
Affiliation(s)
- Natália Oliveira
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Elaine Souza
- Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57.309-005 Arapiraca, AL, Brazil.
| | - Danielly Ferreira
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Deborah Zanforlin
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Wessulla Bezerra
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Maria Amélia Borba
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Mariana Arruda
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Kennya Lopes
- Departamento de Virologia e Terapia Experimental (LAVITE), Centro de Pesquisas Aggeu Magalhães (CPqAM), Fundação Oswaldo Cruz (Fiocruz)-Pernambuco, Av. Professor Moraes Rego, s/n, Campus da UFPE, 50.670-420 Recife, PE, Brazil.
| | - Gustavo Nascimento
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Danyelly Martins
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
- Departamento de Bioquímica, Universidade Federal de Pernambuco-UFPE, Av. Professor Moraes Rego, s/n, Campus da UFPE, CEP: 50670-901 Recife, PE, Brazil.
| | - Marli Cordeiro
- Departamento de Bioquímica, Universidade Federal de Pernambuco-UFPE, Av. Professor Moraes Rego, s/n, Campus da UFPE, CEP: 50670-901 Recife, PE, Brazil.
| | - José Lima-Filho
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
- Departamento de Bioquímica, Universidade Federal de Pernambuco-UFPE, Av. Professor Moraes Rego, s/n, Campus da UFPE, CEP: 50670-901 Recife, PE, Brazil.
| |
Collapse
|
15
|
Chen X, Wang Q, Wang L, Guo H, Yang Y, Li F, Gao F. Construction of a Novel Colitoxin DNA Biosensor Based on Cross-Linker-Free Fixation of Probe Fragments on the Interface of Rugby-Ball-Shaped CoS2 Submicroparticles and Poly(2-thiophenesulfonyl chloride) Composite Film. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503831k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoqian Chen
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Liheng Wang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Hongxu Guo
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yizhen Yang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feiming Li
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feng Gao
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| |
Collapse
|
16
|
A high-performance DNA biosensor using polyhydroxylated fullerenol as 3D matrix for probe immobilization. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|