1
|
Abrosimova LA, Kisil OV, Romanova EA, Oretskaya TS, Kubareva EA. Nicking Endonucleases as Unique Tools for Biotechnology and Gene Engineering. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Shen ZF, Li F, Jiang YF, Chen C, Xu H, Li CC, Yang Z, Wu ZS. Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes. Anal Chem 2018; 90:3335-3340. [DOI: 10.1021/acs.analchem.7b04895] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi-Fa Shen
- Henan Key Laboratory of Immunology and Targeted Drugs, Research Center for Molecular Oncology and Functional Nucleic Acids, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Feng Li
- Henan Key Laboratory of Immunology and Targeted Drugs, Research Center for Molecular Oncology and Functional Nucleic Acids, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yi-Fan Jiang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chang Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huo Xu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Cong-Cong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhe Yang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
3
|
Wang HY, Ma JL, Yin BC, Ye BC. Nicotinamide adenine dinucleotide detection based on silver nanoclusters stabilized by a dumbbell-shaped probe. Analyst 2017; 142:1765-1771. [PMID: 28425549 DOI: 10.1039/c7an00293a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a novel method for detecting nicotinamide adenine dinucleotide (NAD+) based on fluorescent silver nanoclusters (AgNCs) stabilized by a dumbbell-shaped DNA template containing two cytosine-loops joined in a dsDNA stem. The design involves two types of components: a dumbbell-shaped DNA template and three enzymes. In the presence of NAD+ as a cofactor, Escherichia coli DNA ligase (E.coli DNA ligase) catalyzes template ligation to generate a sealed (no terminal nucleotides) dumbbell-shaped structure, preventing digestion by exonuclease III (Exo III) and exonuclease I (Exo I). The loop regions of the intact template serve as sites for the deposition of highly fluorescent AgNCs. In the absence of NAD+, the ligation reaction does not occur, and the unsealed dumbbell-shaped template is digested into mononucleotides via cooperation of Exo III and Exo I. The destruction of the DNA template results in the agglomeration of AgNCs into silver nanoparticles with low fluorescence. The fluorescence enhancement depends on the ligation and digestion of the DNA template, allowing quantitative detection of NAD+ in the range of 0.5 nM-5000 nM with a detection limit of ∼0.25 nM.
Collapse
Affiliation(s)
- Hong-Ya Wang
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Jin-Liang Ma
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China. and School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
4
|
Colorimetric Integrated PCR Protocol for Rapid Detection of Vibrio parahaemolyticus. SENSORS 2016; 16:s16101600. [PMID: 27690041 PMCID: PMC5087389 DOI: 10.3390/s16101600] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Rapid detection of pathogens is of great significance for food safety and disease diagnosis. A new colorimetric method for rapid and easy detection of Vibrio parahaemolyticus (V. parahaemolyticus or Vp) has been developed in this research. A specific sequence was designed and integrated with the forward primer for molecular detection of Vp. This specific sequence was tested and treated as the horseradish peroxidase (HRP)-mimicking DNAzyme and could be amplified during the polymerase chain reaction (PCR) process. The products of PCR including the sequence of HRP-mimicking DNAzyme could produce the distinguished color in the presence of catalysis substrates. The optical signal of the catalysis reaction, which is in a linear relationship with the initial template of Vp, could be determined with the naked eye or measured with Ultraviolet-visible (UV-vis) for qualitative and quantitative detections, respectively. Based on the optical signal intensity, rapid and easy detection of Vp was successfully achieved with satisfied sensitivity and specificity. Furthermore, the detection of tdh, trh, tlh and toxR virulence genes of two Vp species (Vp 33847 and Vp 17802) were all performed successfully with this developed colorimetric integrated PCR protocol, which demonstrated potential applicability for the rapid detection of other bacteria.
Collapse
|
5
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
6
|
Chen X, Lin C, Chen Y, Wang Y, Chen X. A label-free fluorescence strategy for selective detection of nicotinamide adenine dinucleotide based on a dumbbell-like probe with low background noise. Biosens Bioelectron 2015; 77:486-90. [PMID: 26454831 DOI: 10.1016/j.bios.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 01/04/2023]
Abstract
In this work we developed a novel label-free fluorescence sensing approach for the detection of nicotinamide adenine dinucleotide (NAD(+)) based on a dumbbell-like DNA probe designed for both ligation reaction and digestion reaction with low background noise. SYBR Green I (SG I), a double-helix dye, was chosen as the readout fluorescence signal. In the absence of NAD(+), the ligation reaction did not occur, but the probe was digested to mononucleotides after the addition of exonuclease I (Exo I) and exonuclease I (Exo III), resulting in a weak fluorescence intensity due to the weak interaction between SG I and mononucleotides. In the presence of NAD(+), the DNA probe was ligated by Escherichia coli DNA ligase, blocking the digestion by Exo I and Exo III. As a result, SG I was intercalated into the stem part of the DNA dumbbell probe and fluorescence enhancement was achieved. This method was simple in design, fast to operate, with good sensitivity and selectivity which could discriminate NAD(+) from its analogs.
Collapse
Affiliation(s)
- Xuexu Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunshui Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Yiying Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yiru Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
7
|
Zhao H, Wang L, Liu X, Gao Z, Jiang W. Label-free detection of nicotinamide adenine dinucleotide based on ligation-triggered exonuclease III-assisted signal amplification. RSC Adv 2015. [DOI: 10.1039/c5ra13722e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of the Exo III-assisted amplification strategy for NAD+ detection.
Collapse
Affiliation(s)
- Haiyan Zhao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Lei Wang
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
- P. R. China
| | - Xingti Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Zhiyue Gao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| |
Collapse
|
8
|
Wang C, Dong X, Liu Q, Wang K. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction. Anal Chim Acta 2014; 860:83-8. [PMID: 25682251 DOI: 10.1016/j.aca.2014.12.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022]
Abstract
The combination of high selectivity of aptamer with the peroxidase-mimicking property of DNAzyme has presented considerable opportunities for designing colorimetric aptasensor for detection of ochratoxin A (OTA). The activities of both aptamer (as biorecognition element) and DNAzyme (as signal amplification element) are blocked via base pairing in the hairpin structure. Hybridization chain reaction (HCR) between two hairpin DNAs was employed to further improve the sensitivity of this method. The presence of OTA triggers the opening of the hairpin structure and the beginning of HCR, which results in the release of many DNAzyme, and generates enhanced colorimetric signals, which is correlated to the amounts of OTA with linear range between 0.01 to 0.32 nM, and the limit of detection is 0.01 nM under optimal conditions. OTA in yellow rice wine and wheat flour samples was also detected using this method. We demonstrate that a new colorimetric method for the detection of OTA has been established, which is simple, easy to conduct, label-free, sensitive, high throughput, and cost-saving.
Collapse
Affiliation(s)
- Chengke Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoya Dong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
9
|
Yang DK, Kuo CJ, Chen LC. Synthetic multivalent DNAzymes for enhanced hydrogen peroxide catalysis and sensitive colorimetric glucose detection. Anal Chim Acta 2014; 856:96-102. [PMID: 25542363 DOI: 10.1016/j.aca.2014.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022]
Abstract
A peroxidase-mimic DNAzyme is a G-quadruplex (G4) DNA-hemin complex, in which the G4-DNA resembles an apoenzyme, and hemin is the cofactor for hydrogen peroxide (H2O2) catalysis. Twenty-one-mer CatG4 is a well-proven G4-DNA as well as a hemin-binding aptamer for constituting a DNAzyme. This work studied if a multivalent DNAzyme with accelerated catalysis could be constructed using a multimeric CatG4 with hemin. We compared CatG4 monomer, dimer, trimer, and tetramer, which were prepared by custom oligo synthesis, for G4 structure formation. According to circular dichroism (CD) analysis, we found that a CatG4 multimer exhibited more active G4 conformation than the sum effect of equal-number CatG4 monomers. However, the DNAzyme kinetics was not improved monotonically along with the subunit number of a multimeric CatG4. It was the trivalent DNAzyme, trimeric CatG4:hemin, resulting in the rapidest H2O2 catalysis instead of a tetravalent one. We discovered that the trivalent DNAzyme's highest catalytic rate was correlated to its most stable hemin-binding G4 structure, evidenced by CD melting temperature analysis. Finally, a trivalent DNAzyme-based colorimetric glucose assay with a detection limit as low as 10 μM was demonstrated, and this assay did not need adenosine 5'-tri-phosphate disodium salt hydrate (ATP) as a DNAzyme boosting agent.
Collapse
Affiliation(s)
- Deng-Kai Yang
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Jung Kuo
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Lin-Chi Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|