1
|
He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Zhou Y, Yu S, Shang J, Chen Y, Wang Q, Liu X, Wang F. Construction of an Exonuclease III-Propelled Integrated DNAzyme Amplifier for Highly Efficient microRNA Detection and Intracellular Imaging with Ultralow Background. Anal Chem 2020; 92:15069-15078. [DOI: 10.1021/acs.analchem.0c03073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yangjie Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
3
|
Chen D, Zhang M, Ma M, Hai H, Li J, Shan Y. A novel electrochemical DNA biosensor for transgenic soybean detection based on triple signal amplification. Anal Chim Acta 2019; 1078:24-31. [PMID: 31358225 DOI: 10.1016/j.aca.2019.05.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 11/17/2022]
Abstract
A novel electrochemical DNA biosensor was developed and MON89788 of soybean transgenic gene sequence was detected based on a strategy of rolling circle amplification (RCA) and gold nanoparticle cube (AuNPC)-labeled multiple probes. First, the mercapto-modified capture DNA was immobilized on the surface of the Fe3O4@Au magnetic nanoparticles via an Au-S bond, and the capture DNA was opened and complementarily hybridized with the target DNA to form a double-stranded DNA. In the 10 × reaction buffer, Exonuclease III (ExoIII) specifically recognized and sheared the double-stranded DNA to release the target DNA, which led to the next round of reaction. Afterward, AuNP cube-loaded ssDNA (AuNPC/DNA) was added with the rolling circle reaction with the help of Phi29 DNA polymerase and T4 ligase. Finally, [Ru(NH3)6]3+ was attracted directly by the anionic phosphate of ssDNA via electrostatic interaction. The determination was carried out by using chronocoulometry (CC), and the CC signal was recorded. The mass amount of DNA strands extended infinitely on the AuNPs cube and numerous [Ru(NH3)6]3+ were absorbed, thus the detected signal was highly amplified. The corresponding CC signal showed a good linear relationship with the logarithm of the target DNA concentration in the range of 1 × 10-16 to 1 × 10-7 mol L-1, with a detection limit of 4.5 × 10-17 mol L-1. Specific gene sequence of MON89788 in soybean samples was determined, and the recoveries ranged from 97.3% to 102.0%. This sensor is one of the most sensitive sensors for genetic sequence assessment at present. Moreover, it demonstrates good selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Dongli Chen
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Meng Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Mingyi Ma
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Hong Hai
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi, 541004, China.
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guangxi, 541004, China.
| | - Yang Shan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| |
Collapse
|
4
|
Chen C, Chen S, Shiddiky MJA, Chen C, Wu KC. DNA‐Templated Copper Nanoprobes: Overview, Feature, Application, and Current Development in Detection Technologies. CHEM REC 2019; 20:174-186. [DOI: 10.1002/tcr.201900022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Chung‐An Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Shih‐Chia Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Muhammad J. A. Shiddiky
- School of Environment and Science & Queensland Micro- and Nanotechnology CentreNathan campus, Griffith University 170 Kessels Road QLD 4111 Australia
| | - Chien‐Fu Chen
- Institute of Applied MechanicsNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
| | - Kevin C.‐W. Wu
- Department of Chemical EngineeringNational Taiwan University, No. 1, Sec. 4 Roosevelt Road Taipei 10617 Taiwan
- Division of Medical Engineering Research, National Health
| |
Collapse
|
5
|
Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 2019; 137:96-109. [PMID: 31085403 DOI: 10.1016/j.bios.2019.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
Abstract
During the last decades, by virtue of their unique physicochemical properties and potential application in microelectronics, biosensing and biomedicine, metal nanomaterials (MNs) have attracted great research interest and been highly developed. Deoxyribonucleic acid (DNA) is a particularly interesting ligand for templating bottom-up nanopreparation, by virtue of its excellent properties including nanosized geometry structure, programmable and artificial synthesis, DNA-metal ion interaction and powerful molecular recognition. DNA-templated copper nanoparticles (DNA-CuNPs) has been developed in recent years. Because of its advantages including simple and rapid preparation, high efficiency, MegaStokes shifting and low biological toxicity, DNA-CuNPs has been highly exploited for biochemical sensing from 2010, especially as a label-free detection manner, holding advantages in multiple analytical technologies including fluorescence, electrochemistry, surface plasmon resonance, inductively coupled plasma mass spectrometry and surface enhanced Raman spectroscopy. This review comprehensively tracks the preparation of DNA-CuNPs and its application in biosensing, and highlights the potential development and challenges regarding this field, aiming to promote the advance of this fertile research area.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| | - Ailing Bai
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
6
|
Teng J, Huang L, Zhang L, Li J, Bai H, Li Y, Ding S, Zhang Y, Cheng W. High-sensitive immunosensing of protein biomarker based on interfacial recognition-induced homogeneous exponential transcription. Anal Chim Acta 2019; 1067:107-114. [PMID: 31047141 DOI: 10.1016/j.aca.2019.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
A novel and versatile immunosensing strategy was developed for ultrasensitive and specific detection of proteins by organically integrating interfacial specific target recognition and homogeneous transcription amplification. In principle, classic antigen-antibody sandwich structure on the microplate could realize the specific identification of target protein. Biotinylated DNA probe was subsequently introduced by streptavidin-biotin system as a bridge linking interfacial and homogeneous reaction. The biotinylated DNA initiated exponential transcription amplification in the solution, which converted per target recognition event on the interface to numerous single-stranded RNA products in solution for highly sensitive fluorescence immunosensing. The proposed immunoassay based on interfacial recognition-induced homogeneous exponential transcription (IR-HET) for vascular endothelial growth factor (VEGF) detection showed a good linear range from 0.01 to 1000 pg/mL and the limit of detection as low as 1 fg/mL, which was 3 orders lower than traditional ELISA method. The established strategy was also successfully applied to directly detect VEGF from culture supernatants of tumor cells and clinical body fluid samples, proving very high sensitivity, selectivity and low matrix effect. Therefore, IR-HET-based immunosensing strategy might become a potential powerful tool be applied in ultrasensitive detection of low abundance protein biomarker for clinical early diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jie Teng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Lizhen Huang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Lutan Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jia Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Huili Bai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying Li
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yuhong Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
7
|
Liu R, Wang C, Hu J, Su Y, Lv Y. DNA-templated copper nanoparticles: Versatile platform for label-free bioassays. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Li J, Zhou W, Yuan R, Xiang Y. Aptamer proximity recognition-dependent strand translocation for enzyme-free and amplified fluorescent detection of thrombin via catalytic hairpin assembly. Anal Chim Acta 2018; 1038:126-131. [PMID: 30278894 DOI: 10.1016/j.aca.2018.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/12/2023]
Abstract
By coupling a new aptamer proximity recognition-dependent strand translocation strategy with catalytic hairpin assembly (CHA) signal amplification, we have developed a simple and sensitive method for detecting thrombin in human serums. Simultaneous binding of two engineered aptamer probes to the thrombin target significantly increases the local concentrations of the two probes and facilitates the translocation of a ssDNA strand from one of the probes to the other through toehold mediated strand displacement. Such a strand translocation leads to the generation of a ssDNA tail in the aptamer sequence for subsequent initiation of the assembly of two fluorescently quenched hairpins into many DNA duplexes via CHA. The formation of the DNA duplexes thus results in significant fluorescence recovery for amplified detection of thrombin down to 8.3 pM. The developed method is highly selective to the thrombin target against other interference proteins due to the dual recognition mode, and can be employed to monitor thrombin in human serum samples. With the advantage of simplicity, sensitivity and selectivity, this method can be a universal non-enzymatic and nanomaterial-free amplified sensing platform for detecting different protein molecules.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenjiao Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Park KW, Batule BS, Kang KS, Park KS, Park HG. Rapid and ultrasensitive detection of microRNA by target-assisted isothermal exponential amplification coupled with poly (thymine)-templated fluorescent copper nanoparticles. NANOTECHNOLOGY 2016; 27:425502. [PMID: 27622680 DOI: 10.1088/0957-4484/27/42/425502] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We devised a novel method for rapid and ultrasensitive detection of target microRNA (miRNA) by employing target-assisted isothermal exponential amplification (TAIEA) combined with poly (thymine)-templated fluorescent copper nanoparticles (CuNPs) as signaling probes. The target miRNA hybridizes to the unimolecular template DNA and works as a primer for the extension reaction to form double-stranded product, which consequently generates two nicking endonuclease recognition sites. By simultaneous nicking and displacement reactions, exponential amplification generates many poly (thymine) strands as final products, which are employed for the synthesis of fluorescent CuNPs. Based on the fluorescent signal from CuNPs, target miRNA is detected as low as 0.27 fM around 1 h of total analysis time. The diagnostic capability of this system has been successfully demonstrated by reliably detecting target miRNA from different cell lysates, showing its great potential towards real clinical applications.
Collapse
Affiliation(s)
- Kwan Woo Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | | | | | | | | |
Collapse
|
10
|
Sharma VK, Trnkova L. Copper Nanoparticle Modified Pencil Graphite Electrode for Electroanalysis of Adenine. ELECTROANAL 2016. [DOI: 10.1002/elan.201600237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vimal Kumar Sharma
- Department of Chemistry; Faculty of Science; Masaryk University; Kamenice 5 CZ-625 00 Brno Czech Republic
| | - Libuse Trnkova
- Department of Chemistry; Faculty of Science; Masaryk University; Kamenice 5 CZ-625 00 Brno Czech Republic
| |
Collapse
|
11
|
Ahour F, Ahsani MK. An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode. Biosens Bioelectron 2016; 86:764-769. [PMID: 27476058 DOI: 10.1016/j.bios.2016.07.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/26/2016] [Accepted: 07/16/2016] [Indexed: 01/10/2023]
Abstract
In this work, we tactfully constructed a novel label-free electrochemical aptasensor for rapid and facile detection of thrombin using graphene oxide (GO) and thrombin binding aptamer (TBA). The strategy relies on the preferential adsorption of single-stranded DNA (ssDNA) to GO over aptamer-target complexes. The TBA-thrombin complex formation was monitored by differential pulse voltammetry (DPV) using the guanine oxidation signal. In the absence of thrombin, the aptamers adsorbed onto the surface of GO leading to a strong background guanine oxidation signal. Conversely, in the presence of thrombin, the conformational transformation of TBA after incubating with the thrombin solution and formation of the aptamer-thrombin complexes which had weak binding ability to GO, leads to the desorption of TBA-thrombin complex from electrode surface and significant oxidation signal decrease. The selectivity of the biosensor was studied using other biological substances. The biosensor's signal was proportional to the thrombin concentration from 0.1 to 10nM with a detection limit of 0.07nM. Particularly, the proposed method could be widely applied to the aptamer-based determination of other target analytes.
Collapse
Affiliation(s)
- F Ahour
- Nanotechnology Research Center, Urmia University, Urmia, Iran.
| | - M K Ahsani
- Nanotechnology Research Center, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Ruiyi L, Ling L, Hongxia B, Zaijun L. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum. Biosens Bioelectron 2016; 79:457-66. [DOI: 10.1016/j.bios.2015.12.092] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/28/2023]
|
13
|
Abstract
Nucleic acid aptamers are promising alternatives to antibodies in analytics. They are generally obtained through an iterative SELEX protocol that enriches a population of synthetic oligonucleotides to a subset that can recognize the chosen target molecule specifically and avidly. A wide range of targets is recognized by aptamers. Once identified and optimized for performance, aptamers can be reproducibly synthesized and offer other key features, like small size, low cost, sensitivity, specificity, rapid response, stability, and reusability. This makes them excellent options for sensory units in a variety of analytical platforms including those with electrochemical, optical, and mass sensitive transduction detection. Many novel sensing strategies have been developed by rational design to take advantage of the tendency of aptamers to undergo conformational changes upon target/analyte binding and employing the principles of base complementarity that can drive the nucleic acid structure. Despite their many advantages over antibodies, surprisingly few aptamers have yet been integrated into commercially available analytical devices. In this review, we discuss how to select and engineer aptamers for their identified application(s), some of the challenges faced in developing aptamers for analytics and many examples of their reported successful performance as sensors in a variety of analytical platforms.
Collapse
Affiliation(s)
- Muslum Ilgu
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA
| | - Marit Nilsen-Hamilton
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 50011, USA. and Aptalogic Inc., Ames IA 50014, USA and Ames Laboratory, US DOE, Ames IA 50011, USA
| |
Collapse
|
14
|
Ocaña C, del Valle M. Three different signal amplification strategies for the impedimetric sandwich detection of thrombin. Anal Chim Acta 2016; 912:117-24. [DOI: 10.1016/j.aca.2016.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 11/25/2022]
|
15
|
Cao JX, Wang YS, Xue JH, Huang YQ, Li MH, Chen SH, Zhou B, Tang X, Wang XF, Zhu YF. Exonuclease III-assisted substrate fragment recycling amplification strategy for ultrasensitive detection of uranyl by a multipurpose DNAzyme. RSC Adv 2016. [DOI: 10.1039/c6ra20625e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Substrate fragment cleaved by UO22+ hybridizes with SSP6 to form dsDNA, triggering substrate fragment recycling amplification by Exo III.
Collapse
Affiliation(s)
- Jin-Xiu Cao
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
- The Fifth Affiliated Hospital
| | - Yong-Sheng Wang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Jin-Hua Xue
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Yan-Qin Huang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Ming-Hui Li
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Si-Han Chen
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Bin Zhou
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Xian Tang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Xiao-Feng Wang
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| | - Yu-Feng Zhu
- College of Public Health
- University of South China
- Hengyang 421001
- PR China
| |
Collapse
|
16
|
Yan M, Bai W, Zhu C, Huang Y, Yan J, Chen A. Design of nuclease-based target recycling signal amplification in aptasensors. Biosens Bioelectron 2015; 77:613-23. [PMID: 26485175 DOI: 10.1016/j.bios.2015.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Wenhui Bai
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Chao Zhu
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yafei Huang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Jiao Yan
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
17
|
Label-free aptamer biosensor for selective detection of thrombin. Anal Chim Acta 2015; 899:85-90. [DOI: 10.1016/j.aca.2015.09.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
|
18
|
Yu J, Yang L, Liang X, Dong T, Liu H. Bare magnetic nanoparticles as fluorescence quenchers for detection of thrombin. Analyst 2015; 140:4114-20. [PMID: 25894923 DOI: 10.1039/c5an00519a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid and sensitive detection of thrombin has very important significance in clinical diagnosis. In this work, bare magnetic iron oxide nanoparticles (magnetic nanoparticles) without any modification were used as fluorescence quenchers. In the absence of thrombin, a fluorescent dye (CY3) labeled thrombin aptamer (named CY3-aptamer) was adsorbed on the surface of magnetic nanoparticles through interaction between a phosphate backbone of the CY3-aptamer and hydroxyl groups on the bare magnetic nanoparticles in binding solution, leading to fluorescence quenching. Once thrombin was introduced, the CY3-aptamer formed a G-quartet structure and combined with thrombin, which resulted in the CY3-aptamer being separated from the magnetic nanoparticles and restoration of fluorescence. This proposed assay took advantage of binding affinity between the CY3-aptamer and thrombin for specificity, and bare magnetic nanoparticles for fluorescence quenching. The fluorescence signal had a good linear relationship with thrombin concentration in the range of 1-60 nM, and the limit of detection for thrombin was estimated as low as 0.5 nM. Furthermore, this method could be applied for other target detection using the corresponding fluorescence labeled aptamer.
Collapse
Affiliation(s)
- Jiemiao Yu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | |
Collapse
|
19
|
Zhao J, Lv Y, Kang M, Wang K, Xiang Y. Electrochemical detection of protein by using magnetic graphene-based target enrichment and copper nanoparticles-assisted signal amplification. Analyst 2015; 140:7818-22. [DOI: 10.1039/c5an01742d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new electrochemical method for protein detection has been proposed based on magnetic graphene and duplex DNA-templated copper nanoparticles.
Collapse
Affiliation(s)
- Jing Zhao
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Yun Lv
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Mingyang Kang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Keming Wang
- Department of Oncology
- the Second Affiliated Hospital of Nanjing Medical University
- Nanjing 210011
- P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Science
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|