1
|
Zhang N, Du Y, Zhang Z, Zhu L, Jiang L. Microbe-mediated synthesis of defect-rich CeO 2 nanoparticles with oxidase-like activity for colorimetric detection of L-penicillamine and glutathione. NANOSCALE 2025; 17:4142-4151. [PMID: 39792048 DOI: 10.1039/d4nr03893b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
To enhance production efficiency, curtail costs, and minimize environmental impact, developing simple and sustainable nanozyme synthesis methods has been the focus of relevant research. In this report, graphite-coated CeO2 nanoparticles (CeO2 NPs) with multiple defects (Ce3+ defects, oxygen vacancies and carbon defects) were synthesized via the culture filtrate of the extremely radioresistant bacterium Deinococcus wulumuqiensis R12 (D. wulumuqiensis R12). The as-prepared CeO2 NPs exhibit remarkable oxidase (OXD)-like activity, efficiently catalyzing the oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form oxTMB, even in the absence of H2O2. The electron-rich bioactive substances in the supernatant were demonstrated to modulate the electronic state of the Ce atom and played a key role in the formation of multiple defects, thereby enhancing the OXD-like activity of CeO2 NPs. Based on the inhibitory effect of sulphydryl groups (-SH) on the TMB-CeO2 system, a colorimetric strategy for the detection of both L-penicillamine (L-PA) and glutathione (GSH) was devised and successfully applied in real sample analysis. The linear ranges of L-PA and GSH detection were found to be 10-500 μM and 9-200 μM with the limits of detection (LODs) at 8.53 and 5.19 μM, respectively. This work provides a straightforward, eco-friendly and nontoxic method for the synthesis and defect construction of CeO2 NPs with OXD-like activity.
Collapse
Affiliation(s)
- Nan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yingyan Du
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang 830091, P. R. China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Feng M, Zhang X, Huang Y. Developing oxygen vacancy-rich CuMn 2O 4/carbon dots dual-function nanozymes via Chan-Lam coupling reaction for the colorimetric/fluorescent determination of D-penicillamine. Biosens Bioelectron 2025; 267:116864. [PMID: 39442436 DOI: 10.1016/j.bios.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Defect engineering is a promising approach to construct high performance nanozymes due to its ability to regulate their physical and chemical properties. However, how to construct defects to improve the activity of nanozymes remains a challenge. Herein, for the first time, the Chan-Lam coupling reaction is used to construct the oxygen vacancy (OV)-rich CuMn2O4/carbon dots (CDs) (OV-CuMn2O4/CDs) dual-function nanozymes with fluorescent (FL) and oxidase-like properties, via regulating the low-valent metal ions (Cu+ and Mn2+) and Ov contents in the spinel CuMn2O4 and in-situ growth of β-cyclodextrin (β-CD)-derived CDs. Expectedly, relative to CuMn2O4, the OV-CuMn2O4/CDs exhibited 35.8%, 8.5%, and 14.6% rise in the contents of Cu+, Mn2+ and Ov, respectively. Abundant Ov provides more O2 adsorption/activation sites, and the charge transfer between Ov and metal atoms increases the charge density around metal atoms. This produces more low-valent metals (like Cu+ and Mn2+) to promote the electron transfer from metal to O atoms and O-O bond cleavage. Thus, the oxidase-like activity of OV-CuMn2O4/CDs is 4.1 times that of CuMn2O4. Also, the in-situ growth of β-CD-derived carbon dots on CuMn2O4 endows OV-CuMn2O4/CDs selective target recognition. Thus, a sensitive and selective colorimetric and fluorescence dual-mode method was established for determining D-penicillamine (D-PA), with the limit of detection of 0.25 and 0.048 μM, respectively. The method was applied to D-PA determination in real samples. This work demonstrates the Chan-Lam coupling reaction can be used to construct high performance nanozymes for developing dual-mode sensor for the detection of targets.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuming Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Tang K, Chen Y, Tang S, Wu X, Zhao P, Fu J, Lei H, Yang Z, Zhang Z. A smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor for visual detection of mercury ions and l-penicillamine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159073. [PMID: 36179841 DOI: 10.1016/j.scitotenv.2022.159073] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Establishment of a rapid, sensitive, visual, accurate and low-cost fluorescence detection system to detect multiple targets was of great significance in food safety evaluation, ecological environment monitoring and human health monitoring. In this work, a smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor was proposed based on metal-organic framework (NH2-MIL-101(Fe)) and CdTe quantum dots (CdTe QDs) for visual detection of mercury ions (Hg2+) and L-penicillamine (L-PA), in which NH2-MIL-101(Fe) was used as the reference signal and CdTe QDs was used as the response signal. The down-conversion fluorescence system at excitation wavelength of 300 nm (ex: 330 nm) was used to detect Hg2+ and L-PA, in which the detection limit of Hg2+ was 0.053 nM with the fluorescence color changed from green to blue, and the detection limit of L-PA was 1.10 nM with the fluorescence color changed from blue to green. Meanwhile, the up-conversion fluorescence system at excitation wavelength of 700 nm (ex: 700 nm) was used to detect Hg2+ and L-PA. The detection limits of Hg2+ and L-PA were 0.11 nM and 2.93 nM, respectively. The detection of Hg2+ and L-PA were also carried out based on the color extraction RGB values identified by the smartphone with a detection limit of 0.091 nM for Hg2+ and 8.97 nM for L-PA. In addition, the concentrations of Hg2+ and L-PA were evaluated by three-dimensional dynamic analysis in complex environments. The smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor system provides a new strategy for detection Hg2+ and L-PA in food safety evaluation, environmental monitoring and human health monitoring.
Collapse
Affiliation(s)
- Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
DNA-Immobilized Special Conformation Recognition of L-Penicillamine Using a Chiral Molecular Imprinting Technique. Polymers (Basel) 2022; 14:polym14194133. [PMID: 36236082 PMCID: PMC9571851 DOI: 10.3390/polym14194133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
A new chiral molecularly imprinted polymer (MIP) sensor with dual recognition ability was developed for the highly selective separation of enantiomers with toxic side effects in drugs. The sensor contains double-stranded deoxyribonucleic acid (dsDNA) as the element that immobilizes the chiral molecular conformation: the dsDNA enables the imprinted cavities to match the three-dimensional structure and functional groups from the chiral molecule. By embedding the spatial orientation of dsDNA in MIPs, one can accurately capture and immobilize the molecular conformation, eliminating the influence of interfering analogues. Herein, L-penicillamine (L-Pen) was selected as the chiral template molecule and embedded into dsDNA to form dsDNA-L-Pen complex, which was then embedded into the MIPs by electropolymerization. After elution, the stereo-selective imprinted cavities were obtained. The ATATATATATAT-TATATATATATA base sequence showed a high affinity for the embedded L-Pen, which endowed the imprinted cavities with a larger number of sites and improved the selectivity toward Pen enantiomers. Under the optimal working conditions, the current response of the MIP/dsDNA sensor exhibited a positive linear relationship with the logarithm of the L-Pen concentration in the range of 3.0 × 10-16 to 3.0 × 10-13 mol/L, and the detection limit was 2.48 × 10-16 mol/L. After the introduction of dsDNA into the MIP, the selectivity of the sensor toward D-Pen increased by 6.4 times, and the sensor was successfully applied in the analysis of L-Pen in penicillamine tablets.
Collapse
|
5
|
Gumus E, Bingol H, Zor E. Nanomaterials-enriched sensors for detection of chiral pharmaceuticals. J Pharm Biomed Anal 2022; 221:115031. [PMID: 36115205 DOI: 10.1016/j.jpba.2022.115031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
Advancements in nanoscience and nanotechnology have opened new pathways to fabricate novel nanostructures with interesting properties that would be used for different applications. In this respect, nanostructures comprising chirality are one of the most rapidly developing research fields encompassing chemistry, physics and biology. Chirality, also known as mirror asymmetry, describes the geometrical property of an object that is not superimposable on its mirror image. This characteristic plays a crucial role because these identical forms of chiral species in pharmaceuticals or food additives may exhibit different effects on living organisms. Therefore, chiral analysis is an important field of modern chemical analysis in health-related industries that are reliant on the production of enantiomeric compounds involving pharmaceuticals. This review covers the recent advances dealing with the synthesis, design and advantageous analytical performance of nanomaterials-enriched sensors used for chiral pharmaceuticals. We conclude this review with the challenges existing in this research field and our perspectives on some potential strategies with cutting-edge approaches for the rational design of sensors for chiral pharmaceuticals. We expect this comprehensive review will inspire future studies in nanomaterials-enriched chiral sensors.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
6
|
Kunachowicz D, Ściskalska M, Jakubek M, Kizek R, Kepinska M. Structural changes in selected human proteins induced by exposure to quantum dots, their biological relevance and possible biomedical applications. NANOIMPACT 2022; 26:100405. [PMID: 35560289 DOI: 10.1016/j.impact.2022.100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) are semi-conductor luminescent nanocrystals usually of 2-10 nm diameter, attracting the significant attention in biomedical studies since emerged. Due to their unique optical and electronic properties, i.e. wide absorption spectra, narrow tunable emission bands or stable, bright photoluminescence, QDs seem to be ideally suited for multi-colour, simultaneous bioimaging and cellular labeling at the molecular level as new-generation probes. A highly reactive surface of QDs allows for conjugating them to biomolecules, what enables their direct binding to areas of interest inside or outside the cell for biosensing or targeted delivery. Particularly protein-QDs conjugates are current subjects of research, as features of QDs can be combined with protein specific functionalities and therefore used as a complex in variety of biomedical applications. It is known that QDs are able to interact with cells, organelles and macromolecules of the human body after administration. QDs are reported to cause changes at proteins level, including unfolding and three-dimensional structure alterations which might hamper proteins from performing their physiological functions and thereby limit the use of QD-protein conjugates in vivo. Moreover, these changes may trigger unwanted cellular outcomes as the effect of different signaling pathways activation. In this review, characteristics of QDs interactions with certain human proteins are presented and discussed. Besides that, the following manuscript provides an overview on structural changes of specific proteins exposed to QDs and their biological and biomedical relevance.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Rene Kizek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|
7
|
Directing electrochemical asymmetric synthesis at heterogeneous interfaces: Past, present, and challenges. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Dan X, Ruiyi L, Qinsheng W, Yongqiang Y, Guangli W, Zaijun L. Synthesis of silver nanocrystal with an excellent oxidase-like activity and its application in colorimetric detection of D-penicillamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Zhang Y, Wang HY, He XW, Li WY, Zhang YK. Homochiral fluorescence responsive molecularly imprinted polymer: Highly chiral enantiomer resolution and quantitative detection of L-penicillamine. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125249. [PMID: 33548789 DOI: 10.1016/j.jhazmat.2021.125249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
In this work, we innovatively synthesized homochiral fluorescence nano molecularly imprinted polymers (D-MIP) with dual affinity (metal ion affinity and homochiral affinity) for the specific separation and detection of L-penicillamine (L-PA), which is a core-shell structure with a SiO2-covered CDs core and an imprinted layer with L-PA cavities. A switch for fluorescence response was built by chelating grafted Cu2+, what's more, the imprinted L-PA was pre immobilized by Cu2+ to form the directional imprinting with predetermined spatial structure. More importantly, the homochiral affinity of D-galactose in homochiral molecularly imprinted polymers (D-MIP) greatly enhanced the selective adsorption of L-PA, and D-MIP showed a high selectivity factor (α) of 3.45, which is 1.9 times that of the non-homochiral molecularly imprinted polymers (MIP). Meanwhile, D-MIP exhibited a high enantiomeric excess (ee) value of 56% for separation of racemic PA. Additionally, a high sensitive and selective method was established for the detection of L-PA.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Hai-Yan Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Lee E, Okazaki C, Tenma H, Hosoi Y, Ju H, Ikeda M, Kuwahara S, Habata Y. Argentivorous Molecules Exhibiting Highly Selective Silver(I) Chiral Enhancement. Inorg Chem 2020; 59:13435-13441. [DOI: 10.1021/acs.inorgchem.0c01819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | - Mari Ikeda
- Education Center, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
| | | | | |
Collapse
|
11
|
Zhu F, Wang J, Xie S, Zhu Y, Wang L, Xu J, Liao S, Ren J, Liu Q, Yang H, Chen X. l-Pyroglutamic Acid-Modified CdSe/ZnS Quantum Dots: A New Fluorescence-Responsive Chiral Sensing Platform for Stereospecific Molecular Recognition. Anal Chem 2020; 92:12040-12048. [DOI: 10.1021/acs.analchem.0c02668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Sen Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jiwei Ren
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
12
|
|
13
|
Wen Y, Li Z, Jiang J. Delving noble metal and semiconductor nanomaterials into enantioselective analysis. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Ngamdee K, Chaiendoo K, Saiyasombat C, Busayaporn W, Ittisanronnachai S, Promarak V, Ngeontae W. Highly selective circular dichroism sensor based on d-penicillamine/cysteamine‑cadmium sulfide quantum dots for copper (II) ion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:313-321. [PMID: 30579214 DOI: 10.1016/j.saa.2018.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
A highly selective circular dichroism sensor based on cysteamine-capped cadmium sulfide quantum dots (Cys-CdS QDs) was successfully developed for the determination of Cu2+. Basically, the Cys-CdS QDs are not active in circular dichroism spectroscopy. However, the circular dichroism probe (DPA@Cys-CdS QDs) can be simply generated in situ by mixing achiral Cys-CdS QDs with D-penicillamine. The detection principle was based on measuring the circular dichroism signal change upon the addition of Cu2+. The strong CD signal of the DPA@Cys-CdS QDs dramatically decreased in the presence of Cu2+, while other cations did not result in any spectral changes. In addition, the degree of the CD signal decrease was linearly proportional to the concentration of Cu2+ in the range of 0.50-2.25 μM (r2 = 0.9919) with a detection limit of 0.34 μM. Furthermore, the proposed sensor was applied to detect Cu2+ in drinking water samples with %recovery values of 102-114% and %RSD less than 6%.
Collapse
Affiliation(s)
- Kessarin Ngamdee
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanokwan Chaiendoo
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong 21210, Thailand
| | - Vinich Promarak
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wang Chan, Rayong 21210, Thailand
| | - Wittaya Ngeontae
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence for Environmental and Hazardous Waste Management (EHWM), Bangkok 10330, Thailand.
| |
Collapse
|
15
|
An optical sensor based on inner filter effect using green synthesized carbon dots and Cu(II) for selective and sensitive penicillamine determination. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1518-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Shahrajabian M, Ghasemi F, Hormozi-Nezhad MR. Nanoparticle-based Chemiluminescence for Chiral Discrimination of Thiol-Containing Amino Acids. Sci Rep 2018; 8:14011. [PMID: 30228291 PMCID: PMC6143635 DOI: 10.1038/s41598-018-32416-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
The ability to recognize the molecular chirality of enantiomers is extremely important owing to their critical role in drug development and biochemistry. Convenient discrimination of enantiomers has remained a challenge due to lack of unsophisticated methods. In this work, we have reported a simple strategy for chiral recognition of thiol-containing amino acids including penicillamine (PA), and cysteine (Cys). We have successfully designed a nanoparticle-based chemiluminescence (CL) system based on the reaction between cadmium telluride quantum dots (CdTe QDs) and the enantiomers. The different interactions of CdTe QDs with PA enantiomers or Cys enantiomers led to different CL intensities, resulting in the chiral recognition of these enantiomers. The developed method showed the ability for determination of enantiomeric excess of PA and Cys. It has also obtained an enantioselective concentration range from 1.15 to 9.2 mM for PA. To demonstrate the potential application of this method, the designed platform was applied for the quantification of PA in urine and tablet samples. For the first time, we presented a novel practical application of nanoparticle-based CL system for chiral discrimination.
Collapse
Affiliation(s)
- Maryam Shahrajabian
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - Forough Ghasemi
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran
| | - M Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran.
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
17
|
Sianglam P, Kulchat S, Tuntulani T, Ngeontae W. A circular dichroism sensor for selective detection of Cd 2+ and S 2- based on the in-situ generation of chiral CdS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:408-416. [PMID: 28475982 DOI: 10.1016/j.saa.2017.04.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate an advance in the fabrication of circular dichroism (CD) sensors for detection of Cd2+ and S2- based on chiral CdS quantum dots (QDs) generated by a facile in-situ reaction. The chiral quantum dots are generated in solutions composed of Cd2+, S2-, cysteamine (CA) and L-penicillamine (L-PA), with the number of the generated particles limited by either the Cd2+ or S2- concentration. We show that the magnitude of the CD signal produced by the QDs is linearly related to the initial concentration of Cd2+ and S2-, with excellent selectivity over other ions. Our sensor functions over concentration ranges of 65-200μM and 7-125μM with detection limits of 59.7 and 1.6μM for Cd2+ and S2-, respectively. The sensor is applied in real water samples with results comparing favorably with those obtained from ICP-OES (for Cd2+) and HPLC (for S2-).
Collapse
Affiliation(s)
- Pradthana Sianglam
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinan Kulchat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wittaya Ngeontae
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
18
|
Carbon quantum dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Durán GM, Benavidez TE, Contento AM, Ríos A, García CD. Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. J Pharm Anal 2017; 7:324-331. [PMID: 29404056 PMCID: PMC5790703 DOI: 10.1016/j.jpha.2017.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/14/2023] Open
Abstract
A simple methodology was developed to quantify penicillamine (PA) in pharmaceutical samples, using the selective interaction of the drug with Cu-modified graphene quantum dots (Cu-GQDs). The proposed strategy combines the advantages of carbon dots (over other nanoparticles) with the high affinity of PA for the proposed Cu-GQDs, resulting in a significant and selective quenching effect. Under the optimum conditions for the interaction, a linear response (in the 0.10–7.50 µmol/L PA concentration range) was observed. The highly fluorescent GQDs used were synthesized using uric acid as single precursor and then characterized by high resolution transmission electron microscopy, Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence, and absorption spectroscopy. The proposed methodology could also be extended to other compounds, further expanding the applicability of GQDs.
Collapse
Affiliation(s)
- Gema M Durán
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain.,IRICA (Regional Institute of Applied Scientific Research), Camilo José Cela Av., E 13004 Ciudad Real, Spain
| | - Tomás E Benavidez
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA
| | - Ana M Contento
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain
| | - Angel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Camilo José Cela Av., Ciudad Real E 13004, Spain
| | - Carlos D García
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, SC 29634, USA
| |
Collapse
|
20
|
Durán GM, Abellán C, Contento AM, Ríos Á. Discrimination of penicillamine enantiomers using β-cyclodextrin modified CdSe/ZnS quantum dots. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2074-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Hidalgo F, Noguez C. How to control optical activity in organic-silver hybrid nanoparticles. NANOSCALE 2016; 8:14457-14466. [PMID: 27406401 DOI: 10.1039/c6nr02372j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanisms that originate and control optical activity in organic-metal hybrid nanoparticles (NPs) are identified using a time-perturbed density functional theory. Electronic circular dichroism (CD) is studied in terms of the intrinsic chirality of the ligands, the number of ligands and the induced chirality by the arrangement of the ligands on the NP. Left-handed cysteine and achiral methylthio ligands adsorbed on an icosahedral silver NP are investigated. The analysis of CD allows the identification of the spectral regions when the induced chirality by the ligand array dominates over the intrinsic chirality of the ligands, determining conditions for CD control and enlargement. These results would be significant in the discussion of experimental CD spectra of organic-metal hybrid NPs, which might allow the development of new strategies to improve the sensitivity of chiroptical spectroscopies for the identification of bio and organic molecules.
Collapse
Affiliation(s)
- Francisco Hidalgo
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Cd. de México C.P. 01000, Mexico.
| | | |
Collapse
|