1
|
Wang Z, Dong Z, Shen X, Wu B. Molecularly Imprinted Polymers Using Yeast as a Supporting Substrate. Molecules 2023; 28:7103. [PMID: 37894582 PMCID: PMC10608888 DOI: 10.3390/molecules28207103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) have gained significant attention as artificial receptors due to their low cost, mild operating conditions, and excellent selectivity. To optimize the synthesis process and enhance the recognition performance, various support materials for molecular imprinting have been explored as a crucial research direction. Yeast, a biological material, offers advantages such as being green and environmentally friendly, low cost, and easy availability, making it a promising supporting substrate in the molecular imprinting process. We focus on the preparation of different types of MIPs involving yeast and elaborate on the specific roles it plays in each case. Additionally, we discuss the advantages and limitations of yeast in the preparation of MIPs and conclude with the challenges and future development trends of yeast in molecular imprinting research.
Collapse
Affiliation(s)
- Zhigang Wang
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Zhuangzhuang Dong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, China
| | - Bin Wu
- Anheuser-Busch Management (Shanghai) Co., Ltd. Wuhan Branch, Wuhan 430051, China;
| |
Collapse
|
2
|
Del Sole R, Mele G, Bloise E, Mergola L. Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization. Polymers (Basel) 2021; 13:2430. [PMID: 34372030 PMCID: PMC8348058 DOI: 10.3390/polym13152430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km1, 73100 Lecce, Italy; (G.M.); (E.B.); (L.M.)
| | | | | | | |
Collapse
|
3
|
Li G, Wei Y, Ma L, Mao Y, Xun R, Deng Y. A novel highly sensitive soy aptasensor for antigen β-conglycinin determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3059-3067. [PMID: 34137405 DOI: 10.1039/d1ay00701g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
β-Conglycinin, composed of three subunits (α', α and β), is the main allergen of soy protein which can cause severe allergic reactions, such as diarrhea, decreased growth performance and even death. Among them, the β subunit is more stable and difficult to remove, being one of the main nutritional inhibitors, which can be used to evaluate the concentration of β-conglycinin. However, there is no effective, accurate method for its β subunit rapid detection. Herein, we have successfully selected a high affinity β subunit aptamer (Kd = 6.9 nM) and developed a highly sensitive aptasensor. The aptasensor displayed high specificity and the β subunit at a concentration of 70-350 nM could be detected with a detection limit of 4.48 nM (3S/N). In addition, the recoveries of β subunit were more than 90%, demonstrating its practical properties for complicated conditions such as food quality control and disease diagnosis, without requiring expensive and sophisticated equipment.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | |
Collapse
|
4
|
Sharma YB, Hirlekar BU, Bharitkar YP, Hazra A. Lemon Juice: A Versatile Reusable Biocatalyst for the Synthesis of Bioactive Organic Compounds as well as Numerous Nanoparticles Based Catalytic System. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210317151732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Green chemistry is an essential part of the organic synthesis chemistry and plays a
principal role in saving the environment from harmful and toxic catalysts. Fruit juice catalyzed
chemistry is a vital part of green chemistry in which lemon juice plays a potential role
in various organic transformations. This review article summarizes (from 2011-2020) the
application and importance of lemon juice in synthetic organic transformation as well as synthesis
of various type of nanoparticles and catalysts. This review article can help the researchers
to develop the route for the synthesis of various scaffolds, small molecules, nanoparticles
and catalysts under economical and environment friendly condition.
Collapse
Affiliation(s)
- Yogesh Brijwashi Sharma
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata - 700 054, India
| | - Bhakti Umesh Hirlekar
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata - 700 054, India
| | - Yogesh P. Bharitkar
- CSIR-Indian Institute of Integrative Medicine (IIIM), Branch Laboratory, Sanat Nagar, Srinagar-190005 (J&K), India
| | - Abhijit Hazra
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata - 700 054, India
| |
Collapse
|
5
|
Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta 2020; 225:121974. [PMID: 33592722 DOI: 10.1016/j.talanta.2020.121974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Magnetic nanomaterials (MNMs) have gained high attention in different fields of studies due to their ferromagnetic/superparamagnetic properties and their low toxicity and high biocompatibility. MNMs contain magnetic elements such as iron and nickel in metallic, bimetallic, metal oxide, and mixed metal oxide. In electroanalytical methods, MNMs have been applied as sorbents for sample preparation before the electrochemical detection (sorbent role), as the electrode modifier (catalytic role), and the integration of the above two roles (as both sorbent and catalytic agent). In this paper, the application of MNMs in electroanalytical methods have been classified based on the main role of the nanomaterial and discussed separately. Furthermore, catalytic activities of MNMs in electroanalytical methods such as redox electrocatalytic, nanozymes catalytic (peroxidase, catalase activity, oxidase activity, superoxide dismutase activity), catalyst gate, and nanocontainer have been discussed.
Collapse
Affiliation(s)
- Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | | | | | | | | | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
6
|
Khumngern S, Choosang J, Thavarungkul P, Kanatharana P, Numnuam A. Flow injection enzyme-free amperometric uric acid sensor consisting of ordered mesoporous carbon decorated with 3D Pd-Pt alloy nanodendrite modified screen-printed carbon electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Hepokur C, Sivas Cumhuriyet University, Sivas, Turkey, Öztop HN, Saraydin D, Sivas Cumhuriyet University, Sivas, Turkey, Sivas Cumhuriyet University, Sivas, Turkey. Preparation and Characterization of Molecular Imprinted Polymer for the Selective Recognition of Serotonin. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.02.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Sun Y, Feng X, Hu J, Bo S, Zhang J, Wang W, Li S, Yang Y. Preparation of hemoglobin (Hb)-imprinted poly(ionic liquid)s via Hb-catalyzed eATRP on gold nanodendrites. Anal Bioanal Chem 2019; 412:983-991. [PMID: 31848668 DOI: 10.1007/s00216-019-02324-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/06/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Hemoglobin (Hb)-imprinted poly(ionic liquid)s (HIPILs) were prepared on the surface of Au electrode modified with gold nanodendrites (Au/ND/HIPILs). HIPILs were synthesized with 1-vinyl-3-propyl imidazole sulfonate ionic liquids as functional monomers via electrochemically mediated atom transfer radical polymerization (eATRP) catalyzed by Hb. The Au/ND/HIPILs electrode was examined by cyclic voltammetry (CV), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The Au/ND/HIPILs electrode was also used as an electrochemical sensor to determine Hb by differential pulse voltammetry (DPV). Under the optimal conditions, the detection range of Hb was from 1.0 × 10-14 to 1.0 × 10-4 mg/mL with a limit of detection of 5.22 × 10-15 mg/mL (S/N = 3). Compared with other methods, the sensor based on poly(ionic liquid)s had the broader linear range and lower detection limit. Graphical Abstract.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China.
| | - Xuewei Feng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Jing Hu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Shuang Bo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Jiameng Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Siyu Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Yifei Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, Liaoning, China
| |
Collapse
|
9
|
Das TR, Sharma PK. Sensitive and selective electrochemical detection of Cd2+ by using bimetal oxide decorated Graphene oxide (Bi2O3/Fe2O3@GO) electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Beluomini MA, da Silva JL, de Sá AC, Buffon E, Pereira TC, Stradiotto NR. Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Li R, Feng Y, Pan G, Liu L. Advances in Molecularly Imprinting Technology for Bioanalytical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E177. [PMID: 30621335 PMCID: PMC6338937 DOI: 10.3390/s19010177] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022]
Abstract
In recent years, along with the rapid development of relevant biological fields, there has been a tremendous motivation to combine molecular imprinting technology (MIT) with biosensing. In this situation, bioprobes and biosensors based on molecularly imprinted polymers (MIPs) have emerged as a reliable candidate for a comprehensive range of applications, from biomolecule detection to drug tracking. Unlike their precursors such as classic immunosensors based on antibody binding and natural receptor elements, MIPs create complementary cavities with stronger binding affinity, while their intrinsic artificial polymers facilitate their use in harsh environments. The major objective of this work is to review recent MIP bioprobes and biosensors, especially those used for biomolecules and drugs. In this review, MIP bioprobes and biosensors are categorized by sensing method, including optical sensing, electrochemical sensing, gravimetric sensing and magnetic sensing, respectively. The working mechanism(s) of each sensing method are thoroughly discussed. Moreover, this work aims to present the cutting-edge structures and modifiers offering higher properties and performances, and clearly point out recent efforts dedicated to introduce multi-sensing and multi-functional MIP bioprobes and biosensors applicable to interdisciplinary fields.
Collapse
Affiliation(s)
- Runfa Li
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Yonghai Feng
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| | - Lei Liu
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University.
| |
Collapse
|
12
|
Xu X, Zhang Y, Wang B, Luo L, Xu Z, Tian X. A novel surface plasmon resonance sensor based on a functionalized graphene oxide/molecular-imprinted polymer composite for chiral recognition of l-tryptophan. RSC Adv 2018; 8:32538-32544. [PMID: 35547682 PMCID: PMC9086263 DOI: 10.1039/c8ra06295a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel surface plasmon resonance (SPR) sensor based on a functionalized graphene oxide (GO)/molecular-imprinted polymer composite was developed for the chiral recognition of l-tryptophan (l-Trp). The composite's recognition element was prepared via a facile and green synthesis approach using polydopamine as both a reducer of GO and a functional monomer as well as a cross-linker for molecular imprinting. The composite was characterized via Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. After attaching the composite onto the gold surface of an SPR chip, the sensor was characterized using contact-angle measurements. The sensor exhibited excellent selectivity and chiral recognition for the template (i.e., l-Trp). Density functional theory computations showed that the difference in hydrogen bonding between the composite element and l-Trp and d-Trp played an important role in chiral recognition.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Bingfeng Wang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University Guangzhou 510642 PR China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| | - Xingguo Tian
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 PR China
| |
Collapse
|
13
|
A selective glucose sensor based on direct oxidation on a bimetal catalyst with a molecular imprinted polymer. Biosens Bioelectron 2018; 99:471-478. [DOI: 10.1016/j.bios.2017.08.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/26/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022]
|
14
|
Ruiz-Córdova GA, Khan S, Gonçalves LM, Pividori MI, Picasso G, Sotomayor MDPT. Electrochemical sensing using magnetic molecularly imprinted polymer particles previously captured by a magneto-sensor. Talanta 2017; 181:19-23. [PMID: 29426499 DOI: 10.1016/j.talanta.2017.12.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 01/29/2023]
Abstract
The determination of 1-chloro-2,4-dinitrobenzene (CDNB) was used as a proof-of-concept to a simple analytical practical configuration applying magnetic molecularly imprinted particles (mag-MIPs). Mag-MIPs were captured from an emulsion by a home-made magneto-sensor (where a small magnet was entrapped by a graphite-epoxy composite) and then, this sensor, was transferred to the solution containing the analyte, where, after binding to the mag-MIPs, the analyte was directly analysed using differential pulse voltammetry (DPV) since the magneto-sensor acted as the working electrode. After optimization, a detection limit of 6.0 μmol L-1 with a RSD of 2.7% was achieved along with suitable recoveries and selectivity. This methodology offers a different approach for electroanalytical methodologies using mag-MIPs.
Collapse
Affiliation(s)
- Gerson A Ruiz-Córdova
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima, Peru; Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | - Sabir Khan
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | - Luís Moreira Gonçalves
- REQUIMTE/LAQV, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Gino Picasso
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Lima, Peru
| | - Maria Del Pilar T Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, UNESP - Univ Estadual Paulista, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil.
| |
Collapse
|
15
|
Porifreva AV, Gorbatchuk VV, Evtugyn VG, Stoikov II, Evtugyn GA. Glassy Carbon Electrode Modified with Silver Nanodendrites Implemented in Polylactide-Thiacalix[4]arene Copolymer for the Electrochemical Determination of Tryptophan. ELECTROANAL 2017. [DOI: 10.1002/elan.201700638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A. V. Porifreva
- Analytical Chemistry Department of Kazan Federal University, Kremlevskaya, 18; 420008 Kazan Russian Federation
| | - V. V. Gorbatchuk
- Organic Chemistry Department of Kazan Federal University, Kremlevskaya, 18; 420008 Kazan Russian Federation
| | - V. G. Evtugyn
- Interdisciplinary Center for Analytical Microscopy of Kazan Federal University, Kremlevskaya, 18; 420008 Kazan Russian Federation
| | - I. I. Stoikov
- Organic Chemistry Department of Kazan Federal University, Kremlevskaya, 18; 420008 Kazan Russian Federation
| | - G. A. Evtugyn
- Analytical Chemistry Department of Kazan Federal University, Kremlevskaya, 18; 420008 Kazan Russian Federation
| |
Collapse
|
16
|
Patra S, Roy E, Parui R, Madhuri R, Sharma PK. RETRACTED: Anisotropic (spherical/hexagon/cube) silver nanoparticle embedded magnetic carbon nanosphere as platform for designing of tramadol imprinted polymer. Biosens Bioelectron 2017; 97:208-217. [DOI: 10.1016/j.bios.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022]
|
17
|
Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Electrochemical sensors based on magnetic molecularly imprinted polymers: A review. Anal Chim Acta 2017; 960:1-17. [PMID: 28193351 DOI: 10.1016/j.aca.2017.01.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022]
Abstract
Participation of magnetic component in molecularly imprinted polymers (MIPs) has facilitated enormously the incorporation of these polymeric materials on electrode surfaces allowing the design of electrochemical sensors with very attractive analytical characteristics in terms of simplicity, reproducibility, low fabrication cost, high sensitivity and selectivity and rapid assay time. The magnetically susceptible resultant MIPs (MMIPs) allowed a simple and fast elution of the template molecules from MMIPs, are easily and faster collected without filtration, centrifugation or other complex operations and are also faster assembled and removed from the electrode surface by simply using an external magnetic field. A wide range of different (nano)materials such as gold nanoparticles (AuNPs), graphene oxide, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) as well as different electrode modifiers (ionic liquids (ILs) and surfactants/dispersants) have been incorporated into the MMIPs to improve the analytical performance of the resulting electrochemical sensors which have demonstrated great promise for determination of relevant analytes in environmental, food and clinical analyses.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain.
| |
Collapse
|
18
|
Karfa P, Madhuri R, Sharma PK. A battle between spherical and cube-shaped Ag/AgCl nanoparticle modified imprinted polymer to achieve femtogram detection of alpha-feto protein. J Mater Chem B 2016; 4:5534-5547. [PMID: 32263351 DOI: 10.1039/c6tb01306f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this work, a sensitive and selective molecularly imprinted polymer modified electrochemical sensor was developed for the detection of the hepatocellular carcinoma (HCC) biomarker, alpha feto protein (AFP) on the surface of specifically designed Ag/AgCl nanoparticles. Herein, for the first time, the effect of the shape of nanoparticles on the behavior of an imprinted polymer was studied using cube- and spherical-shaped Ag/AgCl nanoparticles. It was found that cube-shaped nanoparticles have high surface to volume ratios and higher electrocatalytic activity, and are, therefore, a suitable platform for the synthesis of imprinted polymers. Herein, we have demonstrated how a change in the morphology of the nanomaterials can affect the electrochemical and adsorption properties of an imprinted polymer towards the target analyte (here, AFP). A cube-shaped nanoparticle@imprinted polymer was used for the fabrication of the electrochemical sensor, the analytical performance of which was shown, by a square wave stripping voltammetric technique, to be good for the detection of AFP. The current response of the electrochemical sensor was linear for AFP concentrations in the range from 0.10 to 700.0 pg mL-1, with an ultra trace detection limit of 24.6 fg mL-1. This sensor offers high selectivity, sensitivity, simplicity and clinical applicability for AFP determination in human blood serum, plasma, and urine, without using antibodies or any biological components, this has not been reported for previously reported systems. The proposed sensor has the potential to be used as an alternative to the commercially available, costly, sophisticated enzyme-linked immunosorbent assay kits for AFP determination.
Collapse
Affiliation(s)
- Paramita Karfa
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826 004, India.
| | | | | |
Collapse
|