1
|
Wu L, Zhu SC, He Y, Zhu YX, Ou-Yang XL, Zhang D, Li CM. Current perspectives for metabolomics and lipidomics in dyslipidemia of acne vulgaris: a mini review. Front Med (Lausanne) 2025; 11:1538373. [PMID: 39882523 PMCID: PMC11774704 DOI: 10.3389/fmed.2024.1538373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Acne vulgaris (AV) is a common inflammatory disorder involving the pilosebaceous unit. Many studies have reported that people with AV have higher levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) compared to healthy controls. Hence, they concluded that an unhealthy lipid profile is an independent risk factor for AV. Recent research in metabolomics and lipidomics has been propelled by rapid advancements in technologies including computational methods and mass spectrometry. Using metabolomics and lipidomics approach, a broad range of structurally diverse lipid species were detected and important lipid biomarkers were identified that are vital to the pathogenesis of AV. In this review, we will describe the recent progress in dyslipidemia of AV using metabolomics and lipidomics advances. We will begin with a literature overview of dyslipidemia of AV, followed by a short introduction of metabolomics and lipidomics. Finally, we will focus on applying metabolomics and lipidomics in dyslipidemia of AV.
Collapse
Affiliation(s)
- Liang Wu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sheng-Cai Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang He
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Xia Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Liang Ou-Yang
- Department of Plastic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deng Zhang
- Department of Dermatology, The Fifth People's Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Wu L, Zhu Y, Zhu S, Zhang D, Wang X, Xiao Z, Tan Y, Ouyang X, Li C. Untargeted Lipidomics Analysis to Discover Lipid Profiles and Biomarkers of Rabbit Acne Model and Reveal Action Mechanism of Isotretinoin. Drug Des Devel Ther 2024; 18:4003-4016. [PMID: 39258275 PMCID: PMC11386034 DOI: 10.2147/dddt.s476649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Background Acne vulgaris (AV), a chronic inflammatory pilosebaceous disorder, affects 80-90% of teenagers. This study aimed to discover lipid profiles and biomarkers of the rabbit ear acne model, and investigate the mechanism of isotretinoin in treating acne at the lipid level. Methods Untargeted lipidomic analysis using ultra-high performance liquid chromatography system (UHPLC) coupled to q-extraction plus was performed to identify skin lipid metabolites in blank control (groups C), model group (group M) and isotretinoin group (group T). Multivariate statistical analysis was used to process the lipidomics data. Results A total of 43 lipid classes comprising 6989 lipid species were identified from the mass spectrometry data. The orthogonal partial least squares discriminant analysis (OPLS-DA) model demonstrated significant separation in skin lipidomic profiles between group M and group C. With variable influence on projection (VIP) > 1.0 and P-value < 0.05, 299 significantly different lipid metabolites were identified. These lipid metabolites consisted mainly of ceramides (Cer) (53.85%), phosphatidylethanolamines (PE) (9.03%), phosphatidylcholines (PC)(5.35%), and sphingomyelin (SM)(4.01%). Combining with AUC ≥ 0.9 as the elected criteria, Cer (d18;1_24:0), zymosterol (ZyE)(33:5), Cer (t43:1), ZyE (33:6), ZyE (24:7), and ZyE (35:6) have "high" accuracy. Isotretinoin treatment normalized 25 lipid metabolites in the acne model. Conclusion Our findings provide new insights into the role of lipid metabolism in the pathogenesis of acne and the action mechanism of isotretinoin.
Collapse
Affiliation(s)
- Liang Wu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yunxia Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shengcai Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Deng Zhang
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiuping Wang
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhen Xiao
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yanping Tan
- Department of Dermatology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoliang Ouyang
- Department of Plastic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
3
|
Li J, Yan C, Li J, Yong X, Han S, Yang X, Du J, Xu H. Insight into the compositional variation of volatile and polar compounds of Radix Bupleuri from different processing technologies by GC-MS and UHPLC-Q-TOF/MS metabolomics. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39233523 DOI: 10.1002/pca.3426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION Insight into comparing key active ingredients of Radix Bupleuri (RB) based on different processing technologies is a key step to reveal the material basis of drug efficacy and a challenging task for developing traditional Chinese medicine (TCM). OBJECTIVE This work aims to establish a comprehensive comparative analysis method of TCM and its processed products, which can be used to analyze the changing trend of active components of RB before and after processing. METHODS First, RB was processed with rice vinegar, rice wine, and honey. Then, ultra-high-performance liquid chromatography (UHPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) technology as well as multiple statistical analyses were used to comprehensively evaluate the compositional variation of polar and volatile compounds in RB under different processing processes. Meanwhile, in UHPLC-MS, a sequential window acquisition of all theoretical fragment ion spectral and information-dependent acquisition mutual authentication (SIMA) was developed. RESULTS A total of 30 polar components and 33 volatile components were identified as chemical markers (mainly type II saikosaponins, terpenes, and fatty acid esters). These may be the material basis for giving unique pharmacological activities to RB and its processed products. CONCLUSIONS These findings provided a solid foundation for the differentiated clinical application of RB, and the SIMA method held great potential for achieving accurate analysis of TCM processing ingredients.
Collapse
Affiliation(s)
- Jiaxi Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Chengye Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Jiahao Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xin Yong
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Siming Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xiaotong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Jie Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Grčić I, Radetić L, Miklec K, Presečki I, Leskovar K, Meaški H, Čizmić M, Brnardić I. Solar photocatalysis application in UWWTP outlets - simulations based on predictive models in flat-plate reactors and pollutant degradation studies with in silico toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132589. [PMID: 37742381 DOI: 10.1016/j.jhazmat.2023.132589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The application of the solar photocatalysis for the degradation of residual pollutants found in surface water was demonstrated. Semi-pilot scale flat-plate cascade reactor (FPCR) was used to study the degradation of model organic pollutants: enrofloxacin (ENRO), 17β-estradiol (E2) and 1H-benzotriazole (1H-BT) over TiO2 thin-film supported on glass fibers. A modular panel with full-spectra solar lamps with appropriate UVB and UVA irradiation levels was used as a simulation of sunlight. Pollutant degradation in FPCR was estimated using predictive models; intrinsic reaction rate constants (ki) for ENRO, E2 and 1H-BT independent of the reactor size, flow rate and irradiation conditions were determined: 9.60, 3.35 and 0.37 109 s-1 W-0.5 m1.5, respectively. Main degradation products (DPs), formed upon hydroxylation, ring opening and oxidation, were identified using LC-QTOF-MS. The ecotoxicological impact was assessed via T.E.S.T. and ECOSAR open-source tools showing the formation of less harmful DPs after sufficient reaction time. Pollutant degradation was simulated at four locations of interest, i.e. exhausts from urban wastewater treatment plants (UWWTPs) in Zagreb, Croatia (45°N), Krakow, Poland (50°N), Sevilla, Spain (37°N) and Ioannina, Greece (39.6°N). Results have proved that a simple flat-plate system with supported photocatalysts can be easily scaled up and incorporated at the outlet of UWWTP for the reduction of pollutant load and related toxicity. The exhaust canal in Zagreb with the estimated length of a photocatalytic layer of 122 m for the > 90% degradation of all target pollutants was discussed as the best installation site among studied locations. ENVIRONMENTAL IMPLICATION: A multi-disciplinary approach to the tentative application of TiO2 solar photocatalysis outdoors to reduce pollutant loads and toxicity in surface waters was demonstrated. Possible application at four selected locations in Europe, as an additional step in water treatment after urban wastewater treatment plants (UWWTPs) was discussed. Target pollutants were studied under environmentally relevant conditions (sunlight levels, water matrix, simulation of process on a real scale at selected geographical location), at both higher and low concentrations.
Collapse
Affiliation(s)
- Ivana Grčić
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia.
| | - Lucija Radetić
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Kristina Miklec
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Ivana Presečki
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Karlo Leskovar
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Hrvoje Meaški
- University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000 Varaždin, Croatia
| | - Mirta Čizmić
- Selvita S.A., Hondlova 2, 10 000 Zagreb, Croatia
| | - Ivan Brnardić
- University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3, 44000 Sisak, Croatia
| |
Collapse
|
5
|
Visconti G, de Figueiredo M, Salamin O, Boccard J, Vuilleumier N, Nicoli R, Kuuranne T, Rudaz S. Straightforward quantification of endogenous steroids with liquid chromatography-tandem mass spectrometry: Comparing calibration approaches. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123778. [PMID: 37393882 DOI: 10.1016/j.jchromb.2023.123778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Different calibration strategies are used in liquid chromatography hyphenated to mass spectrometry (LC-MS) bioanalysis. Currently, the surrogate matrix and surrogate analyte represent the most widely used approaches to compensate for the lack of analyte-free matrices in endogenous compounds quantification. In this context, there is a growing interest in rationalizing and simplifying quantitative analysis using a one-point concentration level of stable isotope-labeled (SIL) standards as surrogate calibrants. Accordingly, an internal calibration (IC) can be applied when the instrument response is translated into analyte concentration via the analyte-to-SIL ratio performed directly in the study sample. Since SILs are generally used as internal standards to normalize variability between authentic study sample matrix and surrogate matrix used for the calibration, IC can be calculated even if the calibration protocol was achieved for an external calibration (EC). In this study, a complete dataset of a published and fully validated method to quantify an extended steroid profile in serum was recomputed by adapting the role of SIL internal standards as surrogate calibrants. Using the validation samples, the quantitative performances for IC were comparable with the original method, showing acceptable trueness (79%-115%) and precision (0.8%-11.8%) for the 21 detected steroids. The IC methodology was then applied to human serum samples (n = 51) from healthy women and women diagnosed with mild hyperandrogenism, showing high agreement (R2 > 0.98) with the concentrations obtained using the conventional quantification based on EC. For IC, Passing-Bablok regression showed proportional biases between -15.0% and 11.3% for all quantified steroids, with an average difference of -5.8% compared to EC. These results highlight the reliability and the advantages of implementing IC in clinical laboratories routine to simplify quantification in LC-MS bioanalysis, especially when a large panel of analytes is monitored.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Miguel de Figueiredo
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Olivier Salamin
- Center of Research and Expertise in Anti-Doping Sciences - REDs, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Nicolas Vuilleumier
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
6
|
Visconti G, Boccard J, Feinberg M, Rudaz S. From fundamentals in calibration to modern methodologies: A tutorial for small molecules quantification in liquid chromatography-mass spectrometry bioanalysis. Anal Chim Acta 2023; 1240:340711. [PMID: 36641149 DOI: 10.1016/j.aca.2022.340711] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Over the last two decades, liquid chromatography coupled to mass-spectrometry (LC‒MS) has become the gold standard to perform qualitative and quantitative analyses of small molecules. When quantitative analysis is developed, an analyst usually refers to international guidelines for analytical method validation. In this context, the design of calibration curves plays a key role in providing accurate results. During recent years and along with instrumental advances, strategies to build calibration curves have dramatically evolved, introducing innovative approaches to improve quantitative precision and throughput. For example, when a labeled standard is available to be spiked directly into the study sample, the concentration of the unlabeled analog can be easily determined using the isotopic pattern deconvolution or the internal calibration approach, eliminating the need for multipoint calibration curves. This tutorial aims to synthetize the advances in LC‒MS quantitative analysis for small molecules in complex matrices, going from fundamental aspects in calibration to modern methodologies and applications. Different work schemes for calibration depending on the sample characteristics (analyte and matrix nature) are distinguished and discussed. Finally, this tutorial outlines the importance of having international guidelines for analytical method validation that agree with the advances in calibration strategies and analytical instrumentation.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | | | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
7
|
Non-Steroidal Drug Interferences in a Quantitative Multisteroid LC-MS/MS Assay. Cells 2023; 12:cells12020329. [PMID: 36672264 PMCID: PMC9856384 DOI: 10.3390/cells12020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Screening for possible interferences from steroidal compounds other than the target analytes (endogenous or exogenous) is well established in LC-MS/MS assay development for steroid quantification in a routine clinical setting. However, interferences from non-steroidal substances have, hitherto, not been explored. After screening more than 150 pharmaceuticals and their metabolites by analyzing commercial quality control samples from TDM analysis kits (Recipe, Chromsystems) with a multisteroid LC-MS/MS assay (protein precipitation followed by HybridSPE filtration, biphenyl column, methanol-water gradient with NH4F additive), we can report the finding of two newly discovered potential interferences from non-steroidal drugs. Antidepressant paroxetine (PX) was identified as an interference to 17-hydroxyprogesterone (17P), and α-hydroxytriazolam (α-OH-TZM)-a major metabolite of benzodiazepine triazolam (TZM)-was identified as an interference to aldosterone (ALDO). Despite different elemental and structural compositions and nominal masses, the M+1 isotopologues of PX and α-OH-TZM produced overlapping signals in ion traces monitored for the respective analytes (m/z 331 → 109/97 and 361→315/343, respectively). PX and TZM are frequently prescribed drugs, and their therapeutic ranges are far exceeding the reference ranges of 17P or ALDO (µmol vs nmol); therefore, these interferences should be considered clinically relevant. Striving for faster multi-analyte methods with high sample turnover, especially in the field of steroid quantification, can limit assay selectivity and specificity. Therefore, supported by the findings of this study, screening for potential interferences in multi-analyte LC-MS/MS method development should not cover only substances of the same class but also include a set of common drugs.
Collapse
|
8
|
UHPLC-ESI-MS/MS assay for quantification of endocannabinoids in cerebrospinal fluid using surrogate calibrant and surrogate matrix approaches. J Pharm Biomed Anal 2023; 222:115090. [DOI: 10.1016/j.jpba.2022.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|
9
|
Kimmig ACS, Wildgruber D, Gärtner A, Drotleff B, Krylova M, Lämmerhofer M, Sundström-Poromaa I, Derntl B. Lower affective empathy in oral contraceptive users: a cross-sectional fMRI study. Cereb Cortex 2022; 33:4319-4333. [PMID: 36137568 DOI: 10.1093/cercor/bhac345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/10/2023] Open
Abstract
Evidence accumulates that oral contraceptive (OC) use modulates various socio-affective behaviors, including empathic abilities. Endogenous and synthetic sex hormones, such as estrogens and progestogens, bind to receptor sites in brain regions (i.e. frontal, limbic, and cerebellar) involved in socio-affective processing. Therefore, the aim of this study was to investigate the role of OC use in empathy. In a cross-sectional functional magnetic resonance imaging study, women in different hormonal states, including OC use (n = 46) or being naturally cycling in the early follicular (fNC: n = 37) or peri-ovulatory phase (oNC: n = 28), performed a visual, sentence-based empathy task. Behaviorally, OC users had lower empathy ratings than oNC women. Congruently, whole-brain analysis revealed significantly larger task-related activation of several brain regions, including the left dorsomedial prefrontal gyrus (dmPFG), left precentral gyrus, and left temporoparietal junction in oNC compared to OC women. In OC users, the activity of the left dmPFG and precentral gyrus was negatively associated with behavioral and self-reported affective empathy. Furthermore, empathy-related region-of-interest analysis indicated negative associations of brain activation with synthetic hormone levels in OC women. Overall, this multimodal, cross-sectional investigation of empathy suggests a role of OC intake in especially affective empathy and highlights the importance of including synthetic hormone levels in OC-related analyses.
Collapse
Affiliation(s)
- Ann-Christin Sophie Kimmig
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Ottfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Dirk Wildgruber
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Anna Gärtner
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Bernhard Drotleff
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Marina Krylova
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany.,Department of Radiology, Institute of Diagnostic and Interventional Radiology, Medical Physics Group, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Michael Lämmerhofer
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Inger Sundström-Poromaa
- Department of Women's and Children's Health, University of Uppsala, Akademiska sjukhuset, 751 85 Uppsala, Sweden
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Europastraße 6, 72072 Tübingen Germany
| |
Collapse
|
10
|
Liang H, Yan J, Song K. Comprehensive lipidomic analysis reveals regulation of glyceride metabolism in rat visceral adipose tissue by high-altitude chronic hypoxia. PLoS One 2022; 17:e0267513. [PMID: 35522648 PMCID: PMC9075645 DOI: 10.1371/journal.pone.0267513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
Adipose tissue plays a central role in energy substrate homeostasis and is a key regulator of lipid flow throughout these processes. As hypoxia affects lipid metabolism in adipose tissue, we aimed to investigate the effects of high-altitude chronic hypoxia on lipid metabolism in the adipose tissue of rats using a lipidomic analysis approach. Visceral adipose tissues from rats housed in a high-altitude hypoxia environment representing 4,300 m with 14.07% oxygen (hypoxia group) and from rats housed in a low-altitude normoxia environment representing 41 m with 20.95% oxygen (normoxia group) for 8 weeks were analyzed using an ultra-performance liquid chromatography-Orbitrap mass spectrometry system. After 8 weeks, the body weight and visceral adipose tissue weight of the hypoxia group were significantly decreased compared to those of the normoxia group (p < 0.05). The area and diameter of visceral adipose cells in the hypoxia group were significantly smaller than those of visceral adipose cells in the normoxia group (p < 0.05). The results of lipidomic analysis showed a total of 21 lipid classes and 819 lipid species. The total lipid concentration of the hypoxia group was lower than that in the normoxia group (p < 0.05). Concentrations of diacylglycerols and triacylglycerols in the hypoxia group were significantly lower than those in the normoxia group (p < 0.05). Using univariate and multivariate analyses, we identified 74 lipids that were significantly altered between the normoxia and hypoxia groups. These results demonstrate that high-altitude chronic hypoxia changes the metabolism of visceral adipose glycerides, which may potentially modulate other metabolic processes.
Collapse
Affiliation(s)
- Hong Liang
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, PR, China
| | - Jun Yan
- Cardiovascular Medicine Department, Xuzhou Medical University affiliated Hospital, Xuzhou, PR China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People’s Hospital, Xining, PR, China
- Qinghai University affiliated Provincial People’s Hospital, Xining, PR, China
- * E-mail:
| |
Collapse
|
11
|
Karashima S, Osaka I. Rapidity and Precision of Steroid Hormone Measurement. J Clin Med 2022; 11:jcm11040956. [PMID: 35207229 PMCID: PMC8879901 DOI: 10.3390/jcm11040956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Steroids are present in all animals and plants, from mammals to prokaryotes. In the medical field, steroids are commonly classified as glucocorticoids, mineralocorticoids, and gonadal steroid hormones. Monitoring of hormones is useful in clinical and research fields for the assessment of physiological changes associated with aging, disease risk, and the diagnostic and therapeutic effects of various diseases. Since the discovery and isolation of steroid hormones, measurement methods for steroid hormones in biological samples have advanced substantially. Although immunoassays (IAs) are widely used in daily practice, mass spectrometry (MS)-based methods have been reported to be more specific. Steroid hormone measurement based on MS is desirable in clinical practice; however, there are several drawbacks, including the purchase and maintenance costs of the MS instrument and the need for specialized training of technicians. In this review, we discuss IA- and MS-based methods currently in use and briefly present the history of steroid hormone measurement. In addition, we describe recent advances in IA- and MS-based methods and future applications and considerations.
Collapse
Affiliation(s)
- Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 921-1192, Japan
- Correspondence: (S.K.); (I.O.)
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan
- Correspondence: (S.K.); (I.O.)
| |
Collapse
|
12
|
Kimmig ACS, Bischofberger JA, Birrenbach AD, Drotleff B, Lämmerhofer M, Sundström-Poromaa I, Derntl B. No Evidence for a Role of Oral Contraceptive-Use in Emotion Recognition But Higher Negativity Bias in Early Follicular Women. Front Behav Neurosci 2022; 15:773961. [PMID: 35126066 PMCID: PMC8814336 DOI: 10.3389/fnbeh.2021.773961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/14/2021] [Indexed: 01/20/2023] Open
Abstract
Accuracy in facial emotion recognition has shown to vary with ovarian hormones, both in naturally cycling women, as well as in women taking oral contraceptives. It remains uncertain however, if specific – endogenous and exogenous – hormonal levels selectively impact recognition of certain basic emotions (or neutral faces) and if this relationship coincides with certain affective states. Therefore, we investigated 86 women under different hormonal conditions and compared their performance in an emotion recognition task as well as self-reported measures of affective states. Based on self-reported cycle days and ovulation testing, the participants have been split into groups of naturally cycling women during their early follicular phase (fNC, n = 30), naturally cycling women during their peri-ovulatory phase (oNC, n = 26), and women taking oral contraceptives (OC, n = 30). Participants were matched for age and did not differ in education or neuropsychological abilities. Self-reported anxiety and depressive affective state scores were similar across groups, but current affective state turned out to be significantly more negative in fNC women. Independent of negative affective state, fNC women showed a significantly higher negativity bias in recognizing neutral faces, resulting in a lower recognition accuracy of neutral faces compared to oNC and OC women. In the OC group only, negative affective state was associated with lower recognition accuracy and longer response times for neutral faces. Furthermore, there was a significant, positive association between disgust recognition accuracy and negative affective state in the fNC group. Low progesterone levels during the early follicular phase were linked to higher negative affective state, whereas in the peri-ovulatory phase they were linked to elevated positive affective state. Overall, previous findings regarding impaired emotion recognition during OC-use were not confirmed. Synthetic hormones did not show a correlation with emotion recognition performance and affective state. Considering the important role of emotion recognition in social communication, the elevated negativity bias in neutral face recognition found for fNC women may adversely impact social interactions in this hormonal phase.
Collapse
Affiliation(s)
- Ann-Christin Sophie Kimmig
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
- *Correspondence: Ann-Christin Sophie Kimmig,
| | - Jasper Amadeus Bischofberger
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Annika Dorothea Birrenbach
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Bernhard Drotleff
- Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, University of Tübingen, Tübingen, Germany
| | | | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
- LEAD Graduate School and Research Network, University of Tübingen, Tübingen, Germany
- Tübingen Neuro Campus, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Visconti G, Olesti E, González-Ruiz V, Glauser G, Tonoli D, Lescuyer P, Vuilleumier N, Rudaz S. Internal calibration as an emerging approach for endogenous analyte quantification: Application to steroids. Talanta 2021; 240:123149. [PMID: 34954616 DOI: 10.1016/j.talanta.2021.123149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
The use of mass spectrometry methods with triple quadrupole instruments is well established for quantification. However, the preparation of calibration curves can be time-consuming and prone to analytical errors. In this study, an innovative internal calibration (IC) approach using a one-standard calibration with a stable isotope-labeled (SIL) standard version of the endogenous compound was developed. To ensure optimal quantitative performance, the following parameters were evaluated: the stability of the analyte-to-SIL response factor (RF), the chemical and isotopic purities of the SIL, and the instrumental reproducibility. Using six clinically important endogenous steroids and their respective SIL standards, we demonstrated that RFs obtained on different LC-MS platforms were consistent. The quantitative performance of the proposed approach was determined using quality control samples prepared in depleted serum, and showed both satisfactory precision (1.3%-12.4%) and trueness (77.5%-107.0%, with only 3 values outside ±30%). The developed method was then applied to human serum samples, and the results were similar to those obtained with the conventional quantification approach based on external calibration: the Passing-Bablok regression showed a proportional bias of 6.8% and a mean difference of -5.9% between the two methodologies. Finally, we showed that the naturally occurring isotopes of the SIL can be used to provide additional calibration points and increase the accuracy for analytes with low concentrations.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Eulalia Olesti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - David Tonoli
- Division of Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Pierre Lescuyer
- Division of Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
14
|
Kehelpannala C, Rupasinghe T, Hennessy T, Bradley D, Ebert B, Roessner U. The state of the art in plant lipidomics. Mol Omics 2021; 17:894-910. [PMID: 34699583 DOI: 10.1039/d1mo00196e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are a group of compounds with diverse structures that perform several important functions in plants. To unravel and better understand their in vivo functions, plant biologists have been using various lipidomic technologies including liquid-chromatography (LC)-mass spectrometry (MS). However, there are still significant challenges in LC-MS based plant lipidomics, which need to be addressed. In this review, we provide an overview of the key developments in LC-MS based lipidomic approaches to detect and identify plant lipids with emphasis on areas that can be further improved. Given that the cellular lipidome is estimated to contain hundreds of thousands of lipids,1,2 many of the lipid structures remain to be discovered. Furthermore, the plant lipidome is considered to be significantly more complex compared to that of mammals. Recent technical developments in mass spectrometry have made the detection of novel lipids possible; hence, approaches that can be used for plant lipid discovery are also discussed.
Collapse
Affiliation(s)
- Cheka Kehelpannala
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | | | - Thomas Hennessy
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC 3170, Australia
| | - David Bradley
- Agilent Technologies Australia Pty Ltd, 679 Springvale Road, Mulgrave, VIC 3170, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
15
|
Fast accurate quantification of salivary cortisol and cortisone in a large-scale clinical stress study by micro-UHPLC-ESI-MS/MS using a surrogate calibrant approach. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122939. [PMID: 34547590 DOI: 10.1016/j.jchromb.2021.122939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022]
Abstract
Cortisol and cortisone are common markers for stress and thus preferentially analyzed in matrices that allow non-invasive sampling such as saliva. Though the major drawback of immunoassays is lack of specificity due to cross reactivities, they are still most commonly used for quantification of steroid hormones. To overcome such problems, sensitive methods based on liquid chromatography-mass spectrometry are becoming more and more accepted as the golden standard for steroid bioanalysis as they achieve accurate quantification at trace levels for multiple analytes in the same run. Along this line, the aim of this study was the development of a new microflow UHPLC-ESI-MS/MS method for the measurement of salivary cortisol and cortisone, which due to its microflow regime provides enhanced sensitivity and is more ecofriendly. The developed method implemented sample preparation by Solid-Phase Extraction (SPE) in a 96-well plate format. Data acquisitions were carried out in MRM (multiple reaction monitoring) mode. The quantitative determination of endogenous compounds in saliva remains a challenge since analyte-free matrix is lacking. Hence, a surrogate calibrant approach with cortisol-d4 andcortisone-13C3 was applied for the target compounds in the presented method. A number of factors were optimized and the method validated. The lower limit of quantitation (LLOQ) was 72 and 62 pg mL-1for cortisol and cortisone, respectively. Linear calibration was achieved in the range from 0.062 to 75.5 ng mL-1for cortisol-d4 and 0.072 to 44 ng mL-1forcortisone-13C3. The performance of the method was also evaluated via proficiency test for salivary cortisol. Finally, it was applied successfully to evaluate cortisol and cortisone concentrations in multiple batches in routine clinical stress study samples (4056 total injections with 1983 study samples). Moreover, the instrument performance (in particular retention time variability) within each batch, between different batches and lot-to-lot of 5 investigated capillary columns over time is described. The work documents that micro-UHPLC-ESI-MS/MS is suitable and robust enough to carry out a full clinical study with greater than 1000s of samples over an extended period if adequate internal standards can be used.
Collapse
|
16
|
Xiao J, Shi J, Li R, Her L, Wang X, Li J, Sorensen MJ, Bhatt-Mehta V, Zhu HJ. Developing a SWATH capillary LC-MS/MS method for simultaneous therapeutic drug monitoring and untargeted metabolomics analysis of neonatal plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122865. [PMID: 34365292 DOI: 10.1016/j.jchromb.2021.122865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022]
Abstract
Most medications prescribed to neonatal patients are off-label uses. The pharmacokinetics and pharmacodynamics of drugs differ significantly between neonates and adults. Therefore, personalized pharmacotherapy guided by therapeutic drug monitoring (TDM) and drug response biomarkers are particularly beneficial to neonatal patients. Herein, we developed a capillary LC-MS/MS metabolomics method using a SWATH-based data-independent acquisition strategy for simultaneous targeted and untargeted metabolomics analysis of neonatal plasma samples. We applied the method to determine the global plasma metabolomics profiles and quantify the plasma concentrations of five drugs commonly used in neonatal intensive care units, including ampicillin, caffeine, fluconazole, vancomycin, and midazolam and its active metabolite α-hydroxymidazolam, in neonatal patients. The method was successfully validated and found to be suitable for the TDM of the drugs of interest. Moreover, the global metabolomics analysis revealed plasma metabolite features that could differentiate preterm and full-term neonates. This study demonstrated that the SWATH-based capillary LC-MS/MS metabolomics approach could be a powerful tool for simultaneous TDM and the discovery of neonatal plasma metabolite biomarkers.
Collapse
Affiliation(s)
- Jingcheng Xiao
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ruiting Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Lucy Her
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jiapeng Li
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States
| | - Matthew J Sorensen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Varsha Bhatt-Mehta
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States; Department of Pediatrics and Communicable Diseases, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
17
|
Olesti E, Boccard J, Visconti G, González-Ruiz V, Rudaz S. From a single steroid to the steroidome: Trends and analytical challenges. J Steroid Biochem Mol Biol 2021; 206:105797. [PMID: 33259940 DOI: 10.1016/j.jsbmb.2020.105797] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
For several decades now, the analysis of steroids has been a key tool in the diagnosis and monitoring of numerous endocrine pathologies. Thus, the available methods used to analyze steroids in biological samples have dramatically evolved over time following the rapid pace of technology and scientific knowledge. This review aims to synthetize the advances in steroids' analysis, from classical approaches considering only a few steroids or a limited number of steroid ratios, up to the new steroid profiling strategies (steroidomics) monitoring large sets of steroids in biological matrices. In this context, the use of liquid chromatography coupled to mass spectrometry has emerged as the technique of choice for the simultaneous determination of a high number of steroids, including phase II metabolites, due to its sensitivity and robustness. However, the large dynamic range to be covered, the low natural abundance of some key steroids, the selectivity of the analytical methods, the extraction protocols, and the steroid ionization remain some of the current challenges in steroid analysis. This review provides an overview of the different analytical workflows available depending on the number of steroids under study. Special emphasis is given to sample treatment, acquisition strategy, data processing, steroid identification and quantification using LC-MS approaches. This work also outlines how the availability of steroid standards, the need for complementary analytical strategies and the improvement of calibration approaches are crucial for achieving complete steroidome quantification.
Collapse
Affiliation(s)
- Eulalia Olesti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Gioele Visconti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
18
|
Xu T, Hu C, Xuan Q, Xu G. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta 2020; 1137:156-169. [PMID: 33153599 PMCID: PMC7525665 DOI: 10.1016/j.aca.2020.09.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Lipids are vital biological molecules and play multiple roles in cellular function of mammalian organisms such as cellular membrane anchoring, signal transduction, material trafficking and energy storage. Driven by the biological significance of lipids, lipidomics has become an emerging science in the field of omics. Lipidome in biological systems consists of hundreds of thousands of individual lipid molecules that possess complex structures, multiple categories, and diverse physicochemical properties assembled by different combinations of polar headgroups and hydrophobic fatty acyl chains. Such structural complexity poses a huge challenge for comprehensive lipidome analysis. Thanks to the great innovations in chromatographic separation techniques and the continuous advances in mass spectrometric detection tools, analytical strategies for lipidomics have been highly diversified so that the depth and breadth of lipidomics have been greatly enhanced. This review will present the current state of mass spectrometry-based analytical strategies including untargeted, targeted and pseudotargeted lipidomics. Recent typical applications of lipidomics in biomarker discovery, pathogenic mechanism and therapeutic strategy are summarized, and the challenges facing to the field of lipidomics are also discussed.
Collapse
Affiliation(s)
- Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Cebo M, Fu X, Gawaz M, Chatterjee M, Lämmerhofer M. Micro-UHPLC-MS/MS method for analysis of oxylipins in plasma and platelets. J Pharm Biomed Anal 2020; 189:113426. [DOI: 10.1016/j.jpba.2020.113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
|
20
|
Advances in lipidomics. Clin Chim Acta 2020; 510:123-141. [PMID: 32622966 DOI: 10.1016/j.cca.2020.06.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023]
Abstract
The present article examines recently published literature on lipids, mainly focusing on research involving glycero-, glycerophospho- and sphingo-lipids. The primary aim is identification of distinct profiles in biologic lipidomic systems by ultra-high-performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS, tandem MS) with multivariate data analysis. This review specifically targets lipid biomarkers and disease pathway mechanisms in humans and artificial targets. Different specimen matrices such as primary blood derivatives (plasma, serum, erythrocytes, and blood platelets), faecal matter, urine, as well as biologic tissues (liver, lung and kidney) are highlighted.
Collapse
|
21
|
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020; 10:metabo10060231. [PMID: 32503331 PMCID: PMC7345237 DOI: 10.3390/metabo10060231] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This review aims to summarize current lipid extraction techniques used for untargeted and targeted studies based on mass spectrometry. Considerations, applications, and limitations of these techniques are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids, foods, and microorganisms.
Collapse
|
22
|
Wu H, Wang L, Zhan X, Wang B, Wu J, Zhou A. A UPLC-Q-TOF/MS-based plasma metabolomics approach reveals the mechanism of Compound Kushen Injection-based intervention against non-small cell lung cancer in Lewis tumor-bearing mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153259. [PMID: 32534358 DOI: 10.1016/j.phymed.2020.153259] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/12/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Compound Kushen Injection (CKI), a well-known Chinese Medicine preparation, has been used to treat non-small cell lung cancer (NSCLC) for more than 15 years, and its clinical curative effect is considered to be beneficial. HYPOTHESIS/PURPOSE This study was designed to evaluate the effects and underlying mechanisms of CKI against NSCLC using an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based plasma metabolomics approach. METHODS 4',6-diamidino-2-phenylindole (DAPI) staining and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay were employed to assess apoptosis and the viability of A549 cells with and without CKI treatment. The weight/volume of Lewis lung carcinoma (LLC) sarcomas and histopathological examinations were used to evaluate the anti-tumor effects of CKI against NSCLC. A UPLC-Q-TOF/MS method combined with multivariate data analysis was developed to characterize metabolomic fingerprinting and to screen functional biomarkers that are linked to the CKI treatment of LLC mice, and then metabolic pathway analysis was used to investigate the therapeutic mechanism of CKI. RESULTS DAPI staining and MTT dye reduction assays indicated that CKI-induced apoptosis and inhibited the proliferation of A549 cells, respectively, in a concentration-dependent manner. The sarcoma volumes and weights in LLC tumor-bearing mice in CKI-dosed groups were significantly lower than those in a model group, which was treated with physiological saline. Histopathological analysis of sections of sarcomas and left pulmonary lobes indicated that CKI exerts an ameliorative effect against LLC. Fourteen functional biomarkers that are related to the therapeutic effects of CKI on LLC were screened and identified using a metabolomics study. Analysis of metabolic pathways revealed that the therapeutic effects of CKI on LLC mainly involved glycerophospholipid metabolism, amino acid metabolism and sphingolipid metabolism. As glycerophospholipid metabolism is a crucial feature of cancer-specific metabolism, the enzymes that are involved in 1-acyl-sn-glycero-3-phosphoinositol biosynthesis were further evaluated. Western blotting results indicated that CKI modulated the abnormal biosynthesis pathway of 1-acyl-sn-glycero-3-phosphoinositol by activation of cytidine diphosphate-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and cytosolic phospholipase A2 (cPLA2), and by inhibition of lysophosphatidic acid acyltransferase gamma (AGPAT3). CONCLUSION This study demonstrated that CKI has a favorable anti-tumor effect and that a UPLC-Q-TOF/MS-based metabolomics method in conjunction with further verifications at the biochemical level is a promising approach for investigating its underlying mechanisms.
Collapse
Affiliation(s)
- Huan Wu
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China..
| | - Lina Wang
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Xiang Zhan
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Bin Wang
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jiawen Wu
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - An Zhou
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China..
| |
Collapse
|
23
|
Peña-Herrera JM, Montemurro N, Barceló D, Pérez S. Combining quantitative and qualitative approaches using Sequential Window Acquisition of All Theoretical Fragment-Ion methodology for the detection of pharmaceuticals and related compounds in river fish extracted using a sample miniaturized method. J Chromatogr A 2020; 1620:461009. [PMID: 32173027 DOI: 10.1016/j.chroma.2020.461009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Affiliation(s)
- J M Peña-Herrera
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - N Montemurro
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barceló
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Pérez
- ENFOCHEM, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
24
|
Chien HJ, Wang CS, Chen YH, Toh JT, Zheng YF, Hong XG, Lin HY, Lai CC. Rapid determination of isoflavones and other bioactive compounds in soybean using SWATH-MS. Anal Chim Acta 2020; 1103:122-133. [PMID: 32081177 DOI: 10.1016/j.aca.2019.12.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/11/2023]
Abstract
Isoflavones are the major bioactive components in soybeans. Sequential window acquisition of all theoretical fragment ions (SWATH) is a kind of data-independent acquisition (DIA), such that all fragments of each precursor will be preserved in a SWATH-Mass Spectrometry (SWATH-MS) run. In this study, a high-throughput SWATH-MS method for the determination of 12 isoflavones in soybeans was established. Furthermore, amino acids, saponins can be semi-quantitated from the same SWATH-MS data. Combination of targeted quantification and untargeted profiling with SWATH, all bioactive compounds were analyzed within 5 min in 10 min run time, and the method had good linear regression with r2 > 0.99. The precisions (RSD %) of the intra-day and inter-day analyses ranged from 2.11% to 18.7%, and the accuracies (RE%) ranged from -14.39% to 17.48%. The matrix effect ranged from 88.66% to 114.82%. Moreover, 7 varieties of soybeans were analyzed and compared with this robust screening method.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Yu-Hsun Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Jie-Teng Toh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Xiang-Gui Hong
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Hung-Yu Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan; Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 40402, Taiwan; Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan.
| |
Collapse
|
25
|
After another decade: LC-MS/MS became routine in clinical diagnostics. Clin Biochem 2020; 82:2-11. [PMID: 32188572 DOI: 10.1016/j.clinbiochem.2020.03.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/01/2023]
Abstract
Tandem mass spectrometry - especially in combination with liquid chromatography (LC-MS/MS) - is applied in a multitude of important diagnostic niches of laboratory medicine. It is unquestioned in its routine use and is often unreplaceable by alternative technologies. This overview illustrates the development in the past decade (2009-2019) and intends to provide insight into the current standing and future directions of the field. The instrumentation matured significantly, the applications are well understood, and the in vitro diagnostics (IVD) industry is shaping the market by providing assay kits, certified instruments, and the first laboratory automated LC-MS/MS instruments as an analytical core. In many settings the application of LC-MS/MS is still burdensome with locally lab developed test (LDT) designs relying on highly specialized staff. The current routine applications cover a wide range of analytes in therapeutic drug monitoring, endocrinology including newborn screening, and toxicology. The tasks that remain to be mastered are, for example, the quantification of proteins by means of LC-MS/MS and the transition from targeted to untargeted omics approaches relying on pattern recognition/pattern discrimination as a key technology for the establishment of diagnostic decisions.
Collapse
|
26
|
Hua YL, Ma Q, Zhang XS, Jia YQ, Peng XT, Yao WL, Ji P, Hu JJ, Wei YM. Pulsatilla Decoction Can Treat the Dampness-Heat Diarrhea Rat Model by Regulating Glycerinphospholipid Metabolism Based Lipidomics Approach. Front Pharmacol 2020; 11:197. [PMID: 32194420 PMCID: PMC7064006 DOI: 10.3389/fphar.2020.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Ethnopharmacological Relevance Diarrhea is a major medical problem in clinical practice. According to the theory of traditional Chinese medicine (TCM), different types of diarrhea should be treated with different TCM formulations based on the targeted medical condition. Dampness-heat diarrhea (DHD) is a serious diarrheal disease and Pulsatilla decoction (PD), a TCM, has been found effective against DHD. Objective The aim of this study was to clarify the mechanism of action of PD in DHD using an untargeted lipidomics strategy. Materials and Methods Wistar rats were randomized to four groups, including the control group, model group, PD groups and self-healing group. The PD groups were given a daily intragastric gavage of PD at doses of 3.76 g/kg. The rat model of DHD established by such complex factors as high-sugar and high-fat diet, improper diet, high temperature and humidity environment, drinking and intraperitoneal injection of Escherichia coli., which imitated the inducing conditions of DHD. Then the clinical symptoms and signs, blood routine, serum inflammatory cytokines levels and the histopathological changes of main organs were detected and observed to evaluate DHD model and therapeutic effect of PD. Lipid biomarkers of DHD were selected by comparing the control and model groups with the colon lipidomics technology and an ultra-high performance liquid chromatography (UHPLC) coupled with Q Exactive plus mass analyzer. Multivariate statistical analysis and pattern recognition were employed to examine different lipids within the colon of PD-treated rats. Results The clinical symptoms and signs of the model rats were consistent with the diagnostic criteria of DHD. After treatment with PD, the clinical symptoms and signs of the rats with DHD were improved; the indexes of blood routine and inflammatory cytokines levels tended to be normal. The lipidomics profile of the model group were evidently disordered when compared to the control group. A total of 42 significantly altered lipids between the model-control groups were identified by multivariate statistical analysis. DHD may result from such lipid disorders which are related to glycerophospholipid metabolism, arachidonic acid (AA) metabolism, and sphingolipid metabolism. After PD treatment, the lipidomic profiles of the disorders tended to recover when compared to the model group. Twenty lipid molecules were identified and some glycerophospholipids and AA levels returned close to the normal level. Conclusion Glycerophospholipid metabolism may play an important role in the treatment of dampness-heat induced diarrhea using PD.
Collapse
Affiliation(s)
- Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qi Ma
- Institute of Animal Science, Southwestern University, Chongqing, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ya-Qian Jia
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiao-Ting Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jun-Jie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
27
|
Zhang Q, Liu R, Xu H, Yang X, Zhang Y, Wang Q, Gao P, Bi K, Han T, Li Q. Multifunctional isotopic standards based steroidomics strategy: Exploration of cancer screening model. J Chromatogr A 2020; 1614:460723. [DOI: 10.1016/j.chroma.2019.460723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022]
|
28
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
29
|
Cebo M, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Simultaneous targeted and untargeted UHPLC-ESI-MS/MS method with data-independent acquisition for quantification and profiling of (oxidized) fatty acids released upon platelet activation by thrombin. Anal Chim Acta 2020; 1094:57-69. [DOI: 10.1016/j.aca.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022]
|
30
|
Comprehensive lipidomics of mouse plasma using class-specific surrogate calibrants and SWATH acquisition for large-scale lipid quantification in untargeted analysis. Anal Chim Acta 2019; 1086:90-102. [PMID: 31561798 DOI: 10.1016/j.aca.2019.08.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
Lipidomics has gained rising attention in recent years. Several strategies for lipidomic profiling have been developed, with targeted analysis of selected lipid species, typically utilized for lipid quantification by low-resolution triple quadrupole MS/MS, and untargeted analysis by high-resolution MS instruments, focusing on hypothesis generation for prognostic, diagnostic and/or disease-relevant biomarker discovery. The latter methodologies generally yield relative quantification data with limited inter-assay comparability. In this work we aimed to combine untargeted analysis and absolute quantification to enhance data quality and to obtain independent results for optimum comparability to previous studies or database entries. For the lipidomic analysis of mouse plasma, RP-UHPLC hyphenated to a high-resolution quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition mode was employed. This way, quantifiable data on the MS and the MS/MS level were recorded, which increases assay specificity and quantitative performance. Due to the lack of an appropriate blank matrix for untargeted lipidomics, we herein established a sophisticated strategy for lipid class-specific calibration with stable isotope labeled standards (surrogate calibrants). LLOQs were in the range between 10 and 50 ng mL-1 for LPC, LPE, PI, PS, PG, SM, PC, PE, DAG) or 100-700 ng mL-1 (MAG, TAG), except for cholesterol and CE (1-20 μg mL-1). Acceptable values for accuracy and precision well below ±15% bias were reached for the majority of surrogate calibrants. However, to achieve sufficient accuracy for target lipids, response factors to corresponding surrogate calibrants are required. An approach to estimate response factors via a standard reference material (NIST SRM 1950) was therefore conducted. Furthermore, a useful workflow for post-acquisition re-calibration, involving response factor determination and iteratively built libraries, is suggested. In comparison to single-point calibration, the presented surrogate calibrant method was shown to yield results with improved accuracy that are largely in accordance with standard addition. Quantitative results of real samples (high-fat diet vs control diet) were then compared to two previously published dietary mouse plasma studies that provided absolute lipid levels and showed similar trends.
Collapse
|
31
|
Jia W, Shi L, Zhang F, Chang J, Chu X. High-throughput mass spectrometry scheme for screening and quantification of flavonoids in antioxidant nutraceuticals. J Chromatogr A 2019; 1608:460408. [PMID: 31378531 DOI: 10.1016/j.chroma.2019.460408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
Abstract
Antioxidant nutraceuticals functional characteristic science is a challenging field for combining sensitivity and comprehensiveness. A untargeted screening and quantification method based on ultra-high performance liquid chromatography coupled to Quadrupole-Orbitrap high resolution mass spectrometry has been developed for determination of multiple classes of flavonoids in eight-three nutraceuticals samples. The data acquisition is based on a non-target approach of sequential full scan and variable data independent acquisition of twenty consecutive fragmentation events. The flavonoids include flavanols, flavones, flavanones, anthocyanidins, flavonols and isoflavones. A processing strategy is introduced to implementing filtering methods based on data feature extraction, common ion selection, shoulder peak removal, response threshold adjustment, mass shift and characteristic structural fragments evaluation. Confirmation is based on both accurate mass and isotopic assignment of standards, and further quantification is achieved by fragmentation. This scheme allows in depth characterization of flavonoids with the entire fragments.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Feng Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - James Chang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, United States.
| | - Xiaogang Chu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| |
Collapse
|
32
|
Sequential window acquisition of all theoretical fragments versus information dependent acquisition for suspected-screening of pharmaceuticals in sediments and mussels by ultra-high pressure liquid chromatography-quadrupole time-of-flight-mass spectrometry. J Chromatogr A 2019; 1595:81-90. [DOI: 10.1016/j.chroma.2019.02.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 01/28/2023]
|
33
|
Fanelli F, Di Dalmazi G. Serum steroid profiling by mass spectrometry in adrenocortical tumors: diagnostic implications. Curr Opin Endocrinol Diabetes Obes 2019; 26:160-165. [PMID: 30893084 DOI: 10.1097/med.0000000000000475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Liquid chromatography-tandem mass spectrometry (LC-MS/MS), allowing the reliable measurement of large panels of steroids, opened a new era in the characterization of adrenal diseases. This review summarizes the most recent findings on serum steroid profile in benign adrenocortical tumors and provides a focus on the most promising analytical developments. RECENT FINDINGS Recently developed LC-MS/MS assays included challenging compounds, providing new knowledge on adrenal steroid secretion. Pioneering studies highlighted the potential of incoming technologies in increasing measurement selectivity and implementing the steroidomic approach. In primary aldosteronism, several studies highlighted the signature of aldosterone-producing adenomas, mainly characterized by secretion of hybrid steroids. The combination of steroid panel and radiological data reached an agreement with adrenal vein sampling-based classification in more than 80% of the cases. The serum steroid profiling in patients with Cushing's syndrome, mainly characterized by reduced androgens and increased 11-dexoycorticosterone in adrenal hypercortisolism, showed a good discriminant power for patients' subtyping (90% correct classification rate). Finally, a selected panel of steroids, including 11-deoxycortisol as the main discriminant compound, was able to achieve a good separation of patients with and without adrenocortical carcinomas. SUMMARY The constantly evolving serum steroid profiling by MS may improve the diagnosis of different types of adrenocortical tumors.
Collapse
Affiliation(s)
- Flaminia Fanelli
- Department of Medical and Surgical Sciences, Endocrinology Unit and Center for Applied Biomedical Research (CRBA), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | |
Collapse
|
34
|
Selectivity enhancement using sequential mass isolation window acquisition with hybrid quadrupole time-of-flight mass spectrometry for pesticide residues. J Chromatogr A 2019; 1591:99-109. [PMID: 30658912 DOI: 10.1016/j.chroma.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 12/29/2022]
Abstract
The introduction of sequential mass isolation window acquisition mode in high-resolution quadrupole time-of-flight analysers undoubtedly represents an important improvement in the MS/MS spectra obtained when working in non-target analysis. However, the advantages and limitations of this approach have not been sufficiently defined and evaluated. The present work seeks to fill this gap by considering its application in non-target multiresidue pesticide analysis. This work focuses on the called SWATH® method, which combines both MS and MS/MS acquisition, dividing the entire mass range into smaller segments for the MS/MS mode. The effect of the number of mass isolation windows, the total cycle-time lapsed, the sensitivity obtained, the MS/MS spectra quality, the ion ratio stability as well as the identification and quantification capabilities has been evaluated. The use of ten mass isolation windows for data acquisition was selected as a compromise between the required points per chromatographic peak and the reduction in interferences achieved. An identification study was carried out on 141 pesticides in 20 vegetable matrices to check the false positives and false identifications found automatically, in accordance with the criteria set out in Document No. SANTE/11945/2015. Furthermore, special attention was given to certain issues that can make correct identification difficult, such as low fragment abundance due using of a generic collision energy, the matrix influence on the collision cell, the effect of the concentration level as well as deconvolution failure and mass window width. Finally, to verify the efficiency of the optimum parameters proposed, two proficiency samples were analysed, obtaining good results. This proved the benefits in terms of identification and quantification purposes.
Collapse
|
35
|
Schlotterbeck J, Cebo M, Kolb A, Lämmerhofer M. Quantitative analysis of chemoresistance-inducing fatty acid in food supplements using UHPLC-ESI-MS/MS. Anal Bioanal Chem 2018; 411:479-491. [PMID: 30460390 DOI: 10.1007/s00216-018-1468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
Polyunsaturated fatty acids are important signaling molecules. A recent study reported hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid, 12-oxo-5Z,8E,10E-heptadecatrienoic acid, and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid as chemotherapy resistance-inducing factors when tumor cells were treated with cisplatin. Marine-based food supplements like fish oil or algae extracts are rich in polyunsaturated fatty acids and can contain large amounts of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid. Thus, it was concluded that oral uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid might induce chemoresistance as shown in a mouse model. Cancer patients tend to consume food supplements containing polyunsaturated fatty acids on a regular basis. The uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid should be controlled, because even low concentrations of 0.5 ng mL-1 showed chemoresistance-inducing effects in animal experiments. For accurate analysis of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid a validated method was developed by using ultrahigh-performance liquid chromatography hyphenated to quadrupole time of flight mass spectrometry via electrospray ionization and sample preparation by solid-phase extraction (SPE) with 3-aminopropyl silica. A combined targeted/untargeted approach was utilized using MS/MS by data-independent acquisition with SWATH and applied to commercial food supplements (refined fish oil, fish oil capsules, algae oil capsules, and flaxseed capsules). Accurate quantification of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid on the MS/MS level with simultaneous untargeted fatty acid screening revealed additional information. The LODs for hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid were 0.036 ng mL-1 and 0.054 ng mL-1, respectively. Since hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid was present in the samples in large amounts and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic was not expected to be present in high concentrations, two calibration ranges, namely, 0.5-20 ng mL-1 and 5-200 ng mL-1, were validated. An untargeted screening identified 18-39 free fatty acids being present in the lipid extracts of the food supplement samples. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Jörg Schlotterbeck
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Malgorzata Cebo
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Agnes Kolb
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
36
|
Schlotterbeck J, Chatterjee M, Gawaz M, Lämmerhofer M. Comprehensive MS/MS profiling by UHPLC-ESI-QTOF-MS/MS using SWATH data-independent acquisition for the study of platelet lipidomes in coronary artery disease. Anal Chim Acta 2018; 1046:1-15. [PMID: 30482286 DOI: 10.1016/j.aca.2018.08.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/13/2023]
Abstract
A non-targeted lipidomics workflow based on C8 core-shell particle ultra high-performance liquid chromatography (UHPLC) hyphenated to ESI-QTOF-MS in data-independent acquisition (DIA) mode with sequential window acquisition of all theoretical fragment ion spectra (SWATH) was developed and applied to differential platelet lipidomics profiling of cardiovascular disease patients (stable angina pectoris (n = 10), ST-elevated myocardial infarction (n = 13)) against healthy controls (n = 10). DIA with SWATH generates comprehensive MS and MS/MS data throughout the entire chromatograms and all study samples. Hence, chromatograms can be extracted based on precursors or fragments which provided some benefits in terms of assay specificity in some cases. SWATH acquisition offers flexible experimental design with variable Q1 isolation windows. Liquid chromatography as well as SWATH settings were optimized to cover the lipidome of human platelets. The flexibility of the SWATH experiment design was utilized to implement target SWATH windows with narrow 5 Da Q1 precursor ion selection width (multiple reaction monitoring (MRM)-like SWATH windows) for the detection of low abundant oxidized phospholipids. Data processing was performed with MS-DIAL, and its feasibilities and caveats are discussed by illustrative examples. Thereby, identification of lipids is still a bottleneck in non-targeted lipidomics workflow. MS-DIAL, however, offers automatic identification via spectral matching using an in silico library. In total 1971 molecular features were detected cross the samples of which 611 were identified (total score >70%). The quality of the acquired data was validated with embedded quality control samples (n = 11). 80.3% of all features detected in the QC samples showed a coefficient of variation of below 30%. Multivariate statistics were used to visualize differences in the lipidome of distinct sample groups at a false discovery rate of 5%.
Collapse
Affiliation(s)
- Jörg Schlotterbeck
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- University of Tübingen, Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|