1
|
Hashimoto Y, Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Three- and four-stranded nucleic acid structures and their ligands. RSC Chem Biol 2025; 6:466-491. [PMID: 40007865 PMCID: PMC11848209 DOI: 10.1039/d4cb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleic acids have the potential to form not only duplexes, but also various non-canonical secondary structures in living cells. Non-canonical structures play regulatory functions mainly in the central dogma. Therefore, nucleic acid targeting molecules are potential novel therapeutic drugs that can target 'undruggable' proteins in various diseases. One of the concerns of small molecules targeting nucleic acids is selectivity, because nucleic acids have only four different building blocks. Three- and four-stranded non-canonical structures, triplexes and quadruplexes, respectively, are promising targets of small molecules because their three-dimensional structures are significantly different from the canonical duplexes, which are the most abundant in cells. Here, we describe some basic properties of the triplexes and quadruplexes and small molecules targeting the triplexes and tetraplexes.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| |
Collapse
|
2
|
Ye H, Zhang H, Xiang J, Shen G, Yang F, Wang F, Wang J, Tang Y. Advances and prospects of natural dietary polyphenols as G-quadruplex stabilizers in biomedical applications. Int J Biol Macromol 2024; 254:127825. [PMID: 37926317 DOI: 10.1016/j.ijbiomac.2023.127825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
G-quadruplexes (G4s) have arrested continuous interest in cancer research, and targeting G4s with small molecules has become an ideal approach for drug development. Plant-based dietary polyphenols have attracted much attention for their remarkable anti-cancer effects. Studies have suggested that polyphenols exhibit interesting scaffolds to bind G4s, which can effectively downregulate the proto-oncogenes by stabilizing those G4 structures. Therefore, this review not only summarizes studies on natural dietary polyphenols (including analogs) as G4 stabilizers, but also reveals their anti-cancer activities. Furthermore, the structural and antioxidant insights of polyphenols with G4s are discussed, and future development is proposed. These insights may pave the way for the development of the next generation of anti-cancer drugs targeting nucleic acids.
Collapse
Affiliation(s)
- Huanfeng Ye
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hong Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gang Shen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fengmin Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China
| | - Fangfang Wang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Beijing National Laboratory for Molecular Sciences (BNLMS), PR China.
| |
Collapse
|
3
|
Brzezinska J, Trzciński S, Strzelec J, Chmielewski MK. From CPG to hybrid support: Review on the approaches in nucleic acids synthesis in various media. Bioorg Chem 2023; 140:106806. [PMID: 37660625 DOI: 10.1016/j.bioorg.2023.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Solid-phase synthesis is, to date, the preferred method for the manufacture of oligonucleotides, in quantities ranging from a few micrograms for research purposes to several kilograms for therapeutic or commercial use. But for large-scale oligonucleotide manufacture, scaling up and hazardous waste production pose challenges that necessitate the investigation of alternate synthetic techniques. Despite the disadvantages of glass supports, using soluble supports as a substitute presents difficulties because of their high overall yield and complex purification steps. To address these challenges, various independent approaches have been developed; however, other problems such as insufficient cycle efficiency and synthesis of oligonucleotide chains of desired length continue to exist. In this study, we present a review of the current developments, advantages, and difficulties of recently reported alternatives to supports based on controlled pore glass, and discuss the importance of a support choice to resolve issues arising during oligonucleotide synthesis.
Collapse
Affiliation(s)
- Jolanta Brzezinska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Stanisław Trzciński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Joanna Strzelec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; FutureSynthesis sp. z o.o., ul. Rubież 46B, 61-612 Poznan, Poland.
| |
Collapse
|
4
|
Platella C, Criscuolo A, Riccardi C, Gaglione R, Arciello A, Musumeci D, DellaGreca M, Montesarchio D. Exploring the Binding of Natural Compounds to Cancer-Related G-Quadruplex Structures: From 9,10-Dihydrophenanthrenes to Their Dimeric and Glucoside Derivatives. Int J Mol Sci 2023; 24:ijms24097765. [PMID: 37175474 PMCID: PMC10178421 DOI: 10.3390/ijms24097765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
In-depth studies on the interaction of natural compounds with cancer-related G-quadruplex structures have been undertaken only recently, despite their high potential as anticancer agents, especially due to their well-known and various bioactivities. In this frame, aiming at expanding the repertoire of natural compounds able to selectively recognize G-quadruplexes, and particularly focusing on phenanthrenoids, a mini-library including dimeric (1-3) and glucoside (4-5) analogues of 9,10-dihydrophenanthrenes, a related tetrahydropyrene glucoside (6) along with 9,10-dihydrophenanthrene 7 were investigated here by several biophysical techniques and molecular docking. Compounds 3 and 6 emerged as the most selective G-quadruplex ligands within the investigated series. These compounds proved to mainly target the grooves/flanking residues of the hybrid telomeric and parallel oncogenic G-quadruplex models exploiting hydrophobic, hydrogen bond and π-π interactions, without perturbing the main folds of the G-quadruplex structures. Notably, a binding preference was found for both ligands towards the hybrid telomeric G-quadruplex. Moreover, compounds 3 and 6 proved to be active on different human cancer cells in the low micromolar range. Overall, these compounds emerged as useful ligands able to target G-quadruplex structures, which are of interest as promising starting scaffolds for the design of analogues endowed with high and selective anticancer activity.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Andrea Criscuolo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- Institute of Biostructures and Bioimages, CNR, 80134 Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy
- CINMPIS-Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Selective Targeting of Cancer-Related G-Quadruplex Structures by the Natural Compound Dicentrine. Int J Mol Sci 2023; 24:ijms24044070. [PMID: 36835480 PMCID: PMC9959918 DOI: 10.3390/ijms24044070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Aiming to identify highly effective and selective G-quadruplex ligands as anticancer candidates, five natural compounds were investigated here, i.e., the alkaloids Canadine, D-Glaucine and Dicentrine, as well as the flavonoids Deguelin and Millettone, selected as analogs of compounds previously identified as promising G-quadruplex-targeting ligands. A preliminary screening with the G-quadruplex on the Controlled Pore Glass assay proved that, among the investigated compounds, Dicentrine is the most effective ligand of telomeric and oncogenic G-quadruplexes, also showing good G-quadruplex vs. duplex selectivity. In-depth studies in solution demonstrated the ability of Dicentrine to thermally stabilize telomeric and oncogenic G-quadruplexes without affecting the control duplex. Interestingly, it showed higher affinity for the investigated G-quadruplex structures over the control duplex (Kb~106 vs. 105 M-1), with some preference for the telomeric over the oncogenic G-quadruplex model. Molecular dynamics simulations indicated that Dicentrine preferentially binds the G-quadruplex groove or the outer G-tetrad for the telomeric and oncogenic G-quadruplexes, respectively. Finally, biological assays proved that Dicentrine is highly effective in promoting potent and selective anticancer activity by inducing cell cycle arrest through apoptosis, preferentially targeting G-quadruplex structures localized at telomeres. Taken together, these data validate Dicentrine as a putative anticancer candidate drug selectively targeting cancer-related G-quadruplex structures.
Collapse
|
6
|
Reznichenko O, Leclercq D, Franco Pinto J, Mouawad L, Gabelica V, Granzhan A. Optimization of G-Quadruplex Ligands through a SAR Study Combining Parallel Synthesis and Screening of Cationic Bis(acylhydrazones). Chemistry 2023; 29:e202202427. [PMID: 36286608 PMCID: PMC10099395 DOI: 10.1002/chem.202202427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/06/2022]
Abstract
G-quadruplexes (G4s), secondary structures adopted by guanine-rich DNA and RNA sequences, are implicated in numerous biological processes and have been suggested as potential drug targets. Accordingly, there is an increasing interest in developing high-throughput methods that allow the generation of congeneric series of G4-targeting molecules ("ligands") and investigating their interactions with the targets. We have developed an operationally simple method of parallel synthesis to generate "ready-to-screen" libraries of cationic acylhydrazones, a motif that we have previously identified as a promising scaffold for potent, biologically active G4 ligands. Combined with well-established screening techniques, such as fluorescence melting, this method enables the rapid synthesis and screening of combinatorial libraries of potential G4 ligands. Following this protocol, we synthesized a combinatorial library of 90 bis(acylhydrazones) and screened it against five different nucleic acid structures. This way, we were able to analyze the structure-activity relationships within this series of G4 ligands, and identified three novel promising ligands whose interactions with G4-DNAs of different topologies were studied in detail by a combination of several biophysical techniques, including native mass spectrometry, and molecular modeling.
Collapse
Affiliation(s)
- Oksana Reznichenko
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Denis Leclercq
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Jaime Franco Pinto
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Liliane Mouawad
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Valérie Gabelica
- Univ. BordeauxCNRS, INSERM, ARNAUMR 5320, U1212, IECB33600PessacFrance
| | - Anton Granzhan
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| |
Collapse
|
7
|
Platella C, Napolitano E, Riccardi C, Musumeci D, Montesarchio D. Affinity Chromatography-Based Assays for the Screening of Potential Ligands Selective for G-Quadruplex Structures. ChemistryOpen 2022; 11:e202200090. [PMID: 35608081 PMCID: PMC9127747 DOI: 10.1002/open.202200090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/22/2022] [Indexed: 12/27/2022] Open
Abstract
DNA G-quadruplexes (G4s) are key structures for the development of targeted anticancer therapies. In this context, ligands selectively interacting with G4s can represent valuable anticancer drugs. Aiming at speeding up the identification of G4-targeting synthetic or natural compounds, we developed an affinity chromatography-based assay, named G-quadruplex on Oligo Affinity Support (G4-OAS), by synthesizing G4-forming sequences on commercially available polystyrene OAS. Then, due to unspecific binding of several hydrophobic ligands on nude OAS, we moved to Controlled Pore Glass (CPG). We thus conceived an ad hoc functionalized, universal support on which both the on-support elongation and deprotection of the G4-forming oligonucleotides can be performed, along with the successive affinity chromatography-based assay, renamed as G-quadruplex on Controlled Pore Glass (G4-CPG) assay. Here we describe these assays and their applications to the screening of several libraries of chemically different putative G4 ligands. Finally, ongoing studies and outlook of our G4-CPG assay are reported.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Ettore Napolitano
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Claudia Riccardi
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| | - Domenica Musumeci
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
- Institute of Biostructures and BioimagesCNRVia Tommaso De Amicis, 9580145NaplesItaly
| | - Daniela Montesarchio
- Department of Chemical SciencesUniversity of Naples Federico IIvia Cintia 2180126NaplesItaly
| |
Collapse
|
8
|
Platella C, Capasso D, Riccardi C, Musumeci D, DellaGreca M, Montesarchio D. Natural compounds from Juncus plants interacting with telomeric and oncogene G-quadruplex structures as potential anticancer agents. Org Biomol Chem 2021; 19:9953-9965. [PMID: 34747958 DOI: 10.1039/d1ob01995c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aiming at discovering novel, putative anticancer drugs featuring low-to-null side effects, natural compounds isolated from Juncaceae were studied here for their ability to target G-quadruplex structures originating from cancer-related telomeric and oncogene DNA sequences. Particularly, various dihydrophenanthrene, benzocoumarin and dihydrodibenzoxepin derivatives were firstly screened by the affinity chromatography-based G4-CPG assay, and the compound with the highest affinity and selectivity for G-quadruplexes (named J10) was selected for further studies. Fluorescence spectroscopy and circular dichroism experiments corroborated its capability to selectively recognize and stabilize G-quadruplexes over duplex DNA, also showing a preference for parallel G-quadruplexes. Molecular docking proved that the selective G-quadruplex interactions over duplex interactions could be due to the ability of J10 to bind to the grooves of the telomeric and oncogene G-quadruplex structures. Finally, biological assays demonstrated that J10 induces significant antiproliferative effects on human leukemia cells, with no relevant effects on healthy human fibroblasts. Interestingly, J10 exerts its antiproliferative action on tumor cells by activating the apoptotic pathway.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Capasso
- CIRPEB, University of Naples Federico II, Naples, Italy.,CESTEV, University of Naples Federico II, Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy. .,Institute of Biostructures and Bioimaging (IBB) - CNR, Naples, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 21, 80126 Naples, Italy.
| |
Collapse
|
9
|
Identification of Effective Anticancer G-Quadruplex-Targeting Chemotypes through the Exploration of a High Diversity Library of Natural Compounds. Pharmaceutics 2021; 13:pharmaceutics13101611. [PMID: 34683905 PMCID: PMC8537501 DOI: 10.3390/pharmaceutics13101611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the quest for selective G-quadruplex (G4)-targeting chemotypes, natural compounds have been thus far poorly explored, though representing appealing candidates due to the high structural diversity of their scaffolds. In this regard, a unique high diversity in-house library composed of ca. one thousand individual natural products was investigated. The combination of molecular docking-based virtual screening and the G4-CPG experimental screening assay proved to be useful to quickly and effectively identify-out of many natural compounds-five hit binders of telomeric and oncogenic G4s, i.e., Bulbocapnine, Chelidonine, Ibogaine, Rotenone and Vomicine. Biophysical studies unambiguously demonstrated the selective interaction of these compounds with G4s compared to duplex DNA. The rationale behind the G4 selective recognition was suggested by molecular dynamics simulations. Indeed, the selected ligands proved to specifically interact with G4 structures due to peculiar interaction patterns, while they were unable to firmly bind to a DNA duplex. From biological assays, Chelidonine and Rotenone emerged as the most active compounds of the series against cancer cells, also showing good selectivity over normal cells. Notably, the anticancer activity correlated well with the ability of the two compounds to target telomeric G4s.
Collapse
|
10
|
DNA Binding Mode Analysis of a Core-Extended Naphthalene Diimide as a Conformation-Sensitive Fluorescent Probe of G-Quadruplex Structures. Int J Mol Sci 2021; 22:ijms221910624. [PMID: 34638964 PMCID: PMC8508963 DOI: 10.3390/ijms221910624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide (cex-NDI) was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes. Aiming at evaluating how the fluorescence behaviour of this compound is associated with specific binding modes to the different DNA targets, cex-NDI was here studied in its interaction with hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex models by biophysical techniques, molecular docking, and biological assays. cex-NDI showed different binding modes associated with different amounts of stacking interactions with the three DNA targets. The preferential binding sites were the groove, outer quartet, or intercalative site of the hybrid G-quadruplex, parallel G-quadruplex, and B-DNA duplex, respectively. Interestingly, our data show that the fluorescence intensity of DNA-bound cex-NDI correlates with the amount of stacking interactions formed by the ligand with each DNA target, thus providing the rationale behind the conformation-sensitive properties of cex-NDI and supporting its use as a fluorescent probe of G-quadruplex structures. Notably, biological assays proved that cex-NDI mainly localizes in the G-quadruplex-rich nuclei of cancer cells.
Collapse
|
11
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
12
|
Platella C, Napolitano E, Riccardi C, Musumeci D, Montesarchio D. Disentangling the Structure-Activity Relationships of Naphthalene Diimides as Anticancer G-Quadruplex-Targeting Drugs. J Med Chem 2021; 64:3578-3603. [PMID: 33751881 PMCID: PMC8041303 DOI: 10.1021/acs.jmedchem.1c00125] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In the context of
developing efficient anticancer therapies aimed
at eradicating any sort of tumors, G-quadruplexes represent excellent
targets. Small molecules able to interact with G-quadruplexes can
interfere with cell pathways specific of tumors and common to all
cancers. Naphthalene diimides
(NDIs) are among the most promising, putative anticancer G-quadruplex-targeting
drugs, due to their ability to simultaneously target multiple G-quadruplexes
and their strong, selective in vitro and in vivo anticancer activity.
Here, all the available biophysical, biological, and structural data
concerning NDIs targeting G-quadruplexes were systematically analyzed.
Structure–activity correlations were obtained by analyzing
biophysical data of their interactions with G-quadruplex targets and
control duplex structures, in parallel to biological data concerning
the antiproliferative activity of NDIs on cancer and normal cells.
In addition, NDI binding modes to G-quadruplexes were discussed in
consideration of the structures and properties of NDIs by in-depth
analysis of the available structural models of G-quadruplex/NDI complexes.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.,Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
13
|
Platella C, Trajkovski M, Doria F, Freccero M, Plavec J, Montesarchio D. On the interaction of an anticancer trisubstituted naphthalene diimide with G-quadruplexes of different topologies: a structural insight. Nucleic Acids Res 2020; 48:12380-12393. [PMID: 33170272 PMCID: PMC7708068 DOI: 10.1093/nar/gkaa1001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/29/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Naphthalene diimides showed significant anticancer activity in animal models, with therapeutic potential related to their ability to strongly interact with G-quadruplexes. Recently, a trifunctionalized naphthalene diimide, named NDI-5, was identified as the best analogue of a mini-library of novel naphthalene diimides for its high G-quadruplex binding affinity along with marked, selective anticancer activity, emerging as promising candidate drug for in vivo studies. Here we used NMR, dynamic light scattering, circular dichroism and fluorescence analyses to investigate the interactions of NDI-5 with G-quadruplexes featuring either parallel or hybrid topology. Interplay of different binding modes of NDI-5 to G-quadruplexes was observed for both parallel and hybrid topologies, with end-stacking always operative as the predominant binding event. While NDI-5 primarily targets the 5'-end quartet of the hybrid G-quadruplex model (m-tel24), the binding to a parallel G-quadruplex model (M2) occurs seemingly simultaneously at the 5'- and 3'-end quartets. With parallel G-quadruplex M2, NDI-5 formed stable complexes with 1:3 DNA:ligand binding stoichiometry. Conversely, when interacting with hybrid G-quadruplex m-tel24, NDI-5 showed multiple binding poses on a single G-quadruplex unit and/or formed different complexes comprising two or more G-quadruplex units. NDI-5 produced stabilizing effects on both G-quadruplexes, forming complexes with dissociation constants in the nM range.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Viale Taramelli 10, I-27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, Viale Taramelli 10, I-27100 Pavia, Italy
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
14
|
Pirota V, Platella C, Musumeci D, Benassi A, Amato J, Pagano B, Colombo G, Freccero M, Doria F, Montesarchio D. On the binding of naphthalene diimides to a human telomeric G-quadruplex multimer model. Int J Biol Macromol 2020; 166:1320-1334. [PMID: 33166559 DOI: 10.1016/j.ijbiomac.2020.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
To selectively target telomeric G-quadruplex (G4) DNA, monomeric and dimeric naphthalene diimides (NDIs) were investigated as binders of multimeric G4 structures able to discriminate duplex DNA. These NDIs were analysed by the affinity chromatography-based screening G4-CPG (G-quadruplex on Controlled Pore Glass), using the sequence d[AGGG(TTAGGG)7] (tel46), folding into two consecutive G4s, as model of the human telomeric G4 multimer. In parallel, a telomeric G4 monomer (tel26) and a duplex structure (ds27) were used as controls. According to G4-CPG screening, NDI-5 proved to be the best ligand in terms of dimeric G4 vs. duplex DNA selectivity and was analysed by circular dichroism (CD), gel electrophoresis, isothermal titration calorimetry (ITC) and fluorescence spectroscopy in its interactions with tel46. NDI-5 strongly binds and stabilizes tel46 G4, favouring a hybrid folding in K+-containing buffer. Under these conditions, the binding process comprises a first event involving three molecules of NDI-5 and a second one in which other six molecules bind to the DNA. In a metal cation-free system, NDI-5 induces tel46 G4 folding, as indicated by CD and PAGE, favouring an antiparallel structuring. Docking simulations showed that NDI-5 can effectively bind to the pocket between two G4 units, representing a promising ligand for multimeric G4s.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
15
|
Synthesis, Antiproliferative Activity, and DNA Binding Studies of Nucleoamino Acid-Containing Pt(II) Complexes. Pharmaceuticals (Basel) 2020; 13:ph13100284. [PMID: 33007911 PMCID: PMC7600948 DOI: 10.3390/ph13100284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
We here report our studies on the reaction with the platinum(II) ion of a nucleoamino acid constituted by the l-2,3-diaminopropanoic acid linked to the thymine nucleobase through a methylenecarbonyl linker. The obtained new platinum complexes, characterized by spectroscopic and mass spectrometric techniques, were envisaged to exploit synergistic effects due to the presence of both the platinum center and the nucleoamino acid moiety. The latter can be potentially useful to protect the complexes from early deactivation, as well as to facilitate their cell internalization. The biological activity of the complexes in terms of antiproliferative effects was evaluated in vitro on different cancer cell lines and healthy cells, showing the best results on human cervical adenocarcinoma (HeLa) cells along with good selectivity for cancer over normal cells. In contrast, the metal-free nucleoamino acid did not show any cytotoxicity on both normal and cancer cell lines. Finally, the ability of the novel Pt(II) complexes to bind various DNA model systems was investigated by circular dichroism (CD) spectroscopy and polyacrylamide gel electrophoresis analyses proving that the newly obtained compounds can potentially target DNA, similarly to other well-known anticancer Pt complexes, with a peculiar G-quadruplex vs. duplex selectivity.
Collapse
|
16
|
Musumeci D, Mokhir A, Roviello GN. Synthesis and nucleic acid binding evaluation of a thyminyl l-diaminobutanoic acid-based nucleopeptide. Bioorg Chem 2020; 100:103862. [PMID: 32428744 DOI: 10.1016/j.bioorg.2020.103862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
Herein we present the synthesis of a l-diaminobutanoic acid (DABA)-based nucleopeptide (3), with an oligocationic backbone, realized by solid phase peptide synthesis using thymine-bearing DABA moieties alternating in the sequence with free ones. CD studies evidenced the ability of this oligothymine nucleopeptide, well soluble in aqueous solution, to alter the secondary structure particularly of complementary RNA (poly rA vs poly rU) and inosine-rich RNAs, like poly rI and poly rIC, and showed its preference in binding double vs single-stranded DNAs. Furthermore, ESI mass spectrometry revealed that 3 bound also G-quadruplex (G4) DNAs, with either parallel or antiparallel topologies (adopted in our experimental conditions by c-myc and tel22, respectively). However, it caused detectable changes only in the CD of c-myc (whose parallel G4 structure was also thermally stabilized by ~3 °C), while leaving unaltered the antiparallel structure of tel22. Interestingly, CD and UV analyses suggested that 3 induced a hybrid mixed parallel/antiparallel G4 DNA structure in a random-coil tel22 DNA obtained under salt-free buffer conditions. Titration of the random-coil telomeric DNA with 3 gave quantitative information on the stoichiometry of the obtained complex. Overall, the findings of this work suggest that DABA-based nucleopeptides are synthetic nucleic acid analogues potentially useful in antigene and antisense strategies. Nevertheless, the hexathymine DABA-nucleopeptide shows an interesting behaviour as molecular tool per se thanks to its efficacy in provoking G4 induction in random coil G-rich DNA, as well as for the possibility to bind and stabilize c-myc oncogene in a G4 structure.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, Federico II University, Via Cintia 21, 80126 Naples, Italy; Istituto di Biostrutture e Bioimmagini IBB - CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Friedrich Alexander University, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini IBB - CNR, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
17
|
Trifunctionalized Naphthalene Diimides and Dimeric Analogues as G-Quadruplex-Targeting Anticancer Agents Selected by Affinity Chromatography. Int J Mol Sci 2020; 21:ijms21061964. [PMID: 32183038 PMCID: PMC7139804 DOI: 10.3390/ijms21061964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
A focused library of newly designed monomeric and dimeric naphthalene diimides (NDIs) was analyzed in its ability to recognize specific G-quadruplex (G4) structures discriminating duplex DNA. The best G4 ligands—according to an affinity chromatography-based screening method named G4-CPG—were tested on human cancer and healthy cells, inducing DNA damage at telomeres, and in parallel, showing selective antiproliferative activity on HeLa cancer cells with IC50 values in the low nanomolar range. CD and fluorescence spectroscopy studies allowed detailed investigation of the interaction in solution with different G4 and duplex DNA models of the most promising NDI of the series, as determined by combining the biophysical and biological assays’ data.
Collapse
|
18
|
Platella C, Raucci U, Rega N, D'Atri S, Levati L, Roviello GN, Fuggetta MP, Musumeci D, Montesarchio D. Shedding light on the interaction of polydatin and resveratrol with G-quadruplex and duplex DNA: a biophysical, computational and biological approach. Int J Biol Macromol 2019; 151:1163-1172. [PMID: 31747572 DOI: 10.1016/j.ijbiomac.2019.10.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
Among polyphenols, trans-resveratrol (tRES) and trans-polydatin (tPD) exert multiple biological effects, particularly antioxidant and antiproliferative. In this work, we have investigated the interaction of tPD with three cancer-related DNA sequences able to form G-quadruplex (G4) structures, as well as with a model duplex, and compared its behaviour with tRES. Interestingly, fluorescence analysis evidenced the ability of tPD to bind all the studied DNA systems, similarly to tRES, with tRES displaying a higher ability to discriminate G4 over duplex with respect to tPD. However, neither tRES nor tPD produced significant conformational changes of the analyzed DNA upon binding, as determined by CD-titration analysis. Computational analysis and biological data confirmed the biophysical results: indeed, molecular docking evidenced the stronger interaction of tRES with the promoter of c-myc oncogene, and immunoblotting assays revealed a reduction of c-myc expression, more effective for tRES than tPD. Furthermore, in vitro assays on melanoma cells proved that tPD was able to significantly reduce telomerase activity, and inhibit cell proliferation, with tRES producing higher effects than tPD.
Collapse
Affiliation(s)
- Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Umberto Raucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Naples I-80125, Italy
| | - Stefania D'Atri
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, Rome I-00167, Italy
| | - Lauretta Levati
- Laboratory of Molecular Oncology, IDI-IRCCS, Via dei Monti di Creta 104, Rome I-00167, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, Naples I-80134, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, Rome I-00133, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, Naples I-80134, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, Naples I-80126, Italy
| |
Collapse
|
19
|
Leitner S, Grijalvo S, Solans C, Eritja R, García-Celma MJ, Calderó G. Ethylcellulose nanoparticles as a new "in vitro" transfection tool for antisense oligonucleotide delivery. Carbohydr Polym 2019; 229:115451. [PMID: 31826509 DOI: 10.1016/j.carbpol.2019.115451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Oil-in-water nano-emulsions have been obtained in the HEPES 20 mM buffer solution / [Alkylamidoammonium:Kolliphor EL = 1:1] / [6 wt% ethylcellulose in ethyl acetate] system over a wide oil-to-surfactant range and above 35 wt% aqueous component at 25 °C. The nano-emulsion with an oil-to-surfactant ratio of 70/30 and 95 wt% aqueous component was used for nanoparticles preparation. These nanoparticles (mean diameter around 90 nm and zeta potential of +22 mV) were non-toxic to HeLa cells up to a concentration of 3 mM of cationic species. Successful complexation with an antisense phosphorothioate oligonucleotide targeting Renilla luciferase mRNA was achieved at cationic/anionic charge ratios above 16, as confirmed by zeta potential measurements and an electrophoretic mobility shift assay, provided that no Fetal Bovine Serum is present in the cell culture medium. Importantly, Renilla luciferase gene inhibition shows an optimum efficiency (40%) for the cationic/anionic ratio 28, which makes these complexes promising for "in vitro" cell transfection.
Collapse
Affiliation(s)
- S Leitner
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - S Grijalvo
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - C Solans
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - R Eritja
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - M J García-Celma
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain; Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Univ. de Barcelona, IN2UB, Unitat Associada d'I+D al CSIC, Av Joan XXIII, s/n, 08028 Barcelona, Spain
| | - G Calderó
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
20
|
Evaluation of the selectivity of G-quadruplex ligands in living cells with a small molecule fluorescent probe. Anal Chim Acta X 2019; 2:100017. [PMID: 33117978 PMCID: PMC7587023 DOI: 10.1016/j.acax.2019.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
G-quadruplex has been an emerging target for drug design due to its physiologically important roles in oncology. A number of quadruplex-interactive ligands have been developed by synthetic and medicinal chemists over the past decades. However, the great challenge still remains that the method for detecting the specific targeting of these ligands to the G-quadruplex structures in cells is still lacking. Herein, a detection system for directly identifying the specific targeting of a ligand to DNA G-quadruplexes in cells was constructed by using a small-molecular fluorescent probe (IMT) as a fluorescent indicator. Four typical ligands have been successfully evaluated, demonstrating the promising application of this detection system in the screening and evaluation of quadruplex-specific therapeutic agents.
Collapse
|
21
|
Pagano B, Iaccarino N, Di Porzio A, Randazzo A, Amato J. Screening of DNA G-quadruplex stabilizing ligands by nano differential scanning fluorimetry. Analyst 2019; 144:6512-6516. [DOI: 10.1039/c9an01463b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proof of principle study on the use of nanoDSF as a screening tool for G-quadruplex targeting compounds.
Collapse
Affiliation(s)
- Bruno Pagano
- Department of Pharmacy
- University of Naples Federico II
- 80131 Naples
- Italy
| | - Nunzia Iaccarino
- Department of Pharmacy
- University of Naples Federico II
- 80131 Naples
- Italy
| | - Anna Di Porzio
- Department of Pharmacy
- University of Naples Federico II
- 80131 Naples
- Italy
| | - Antonio Randazzo
- Department of Pharmacy
- University of Naples Federico II
- 80131 Naples
- Italy
| | - Jussara Amato
- Department of Pharmacy
- University of Naples Federico II
- 80131 Naples
- Italy
| |
Collapse
|
22
|
Amato J, Platella C, Iachettini S, Zizza P, Musumeci D, Cosconati S, Pagano A, Novellino E, Biroccio A, Randazzo A, Pagano B, Montesarchio D. Tailoring a lead-like compound targeting multiple G-quadruplex structures. Eur J Med Chem 2018; 163:295-306. [PMID: 30529547 DOI: 10.1016/j.ejmech.2018.11.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/30/2018] [Accepted: 11/23/2018] [Indexed: 11/27/2022]
Abstract
A focused library of analogs of a lead-like G-quadruplex (G4) targeting compound (4), sharing a furobenzoxazine naphthoquinone core and differing for the pendant groups on the N-atom of the oxazine ring, has been here analyzed with the aim of developing more potent and selective ligands. These molecules have been tested vs. topologically different G4s by the G4-CPG assay, an affinity chromatography-based method for screening putative G4 ligands. The obtained results showed that all these compounds were able to bind several G4 structures, both telomeric and extra-telomeric, thus behaving as multi-target ligands, and two of them fully discriminated G4 vs. duplex DNA. Biological assays proved that almost all the compounds produced effective DNA damage, showing marked antiproliferative effects on tumor cells in the low μM range. Combined analysis of the G4-CPG binding assays and biological data led us to focus on compound S4-5, proved to be less cytotoxic than the parent compound 4 on normal cells. An in-depth biophysical characterization of the binding of S4-5 to different G4s showed that the here identified ligand has higher affinity for the G4s and higher ability to discriminate G4 vs. duplex DNA than 4. Molecular docking studies, in agreement with the NMR data, suggest that S4-5 interacts with the accessible grooves of the target G4 structures, giving clues for its increased G4 vs. duplex selectivity.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sara Iachettini
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Alessia Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|