1
|
Silva WR, Santos RM, Wisniewski A. Continuous rotary kiln pyrolysis of cassava plant shoot system and wide speciation of oxygenated and nitrogen-containing compounds in bio-oil by HESI and APPI-Orbitrap MS. BIORESOURCE TECHNOLOGY 2024; 404:130915. [PMID: 38823561 DOI: 10.1016/j.biortech.2024.130915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This work proposes the pyrolysis of the cassava plant shoot system biomass and a comprehensive chemical characterization of the resulting bio-oil. The highest yields of liquid products were obtained at 600 °C, with 12.6 % bio-oil (organic fraction), which presented the lowest total acid number of 65.7 mg KOH g-1. The bio-oil produced at 500 °C exhibited the highest total phenolic content of approximately 41 % GAE, confirmed by GC/MS analysis (33.8 % of the total area). FT-Orbitrap MS analysis found hundreds of oxygenated constituents in the bio-oils, belonging to the O2-7 classes, as well as nitrogen compounds from the Ny and OxNy classes. Higher pyrolysis temperatures resulted in more oxygenated phenolics (O4-7) undergoing secondary degradation and deoxygenation reactions, generating O2-3 compounds. Additional classes affected were O3-5N2-3, while O1-2N1 presented more stable compounds. These findings show that cassava bio-oils are promising sources of renewable chemicals.
Collapse
Affiliation(s)
- Wenes Ramos Silva
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, São Cristóvão SE, 49107-230, Brazil
| | - Roberta Menezes Santos
- Center of Multi-User Chemistry Laboratories, Federal University of Sergipe, São Cristóvão SE, 49107-230, Brazil
| | - Alberto Wisniewski
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, São Cristóvão SE, 49107-230, Brazil.
| |
Collapse
|
2
|
Letourneau DR, Volmer DA. Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review. MASS SPECTROMETRY REVIEWS 2023; 42:144-188. [PMID: 34293221 DOI: 10.1002/mas.21716] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lignin is currently one of the most promising biologically derived resources, due to its abundance and application in biofuels, materials and conversion to value aromatic chemicals. The need to better characterize and understand this complex biopolymer has led to the development of many different analytical approaches, several of which involve mass spectrometry and subsequent data analysis. This review surveys the most important analytical methods for lignin involving mass spectrometry, first looking at methods involving gas chromatography, liquid chromatography and then continuing with more contemporary methods such as matrix assisted laser desorption ionization and time-of-flight-secondary ion mass spectrometry. Following that will be techniques that directly ionize lignin mixtures-without chromatographic separation-using softer atmospheric ionization techniques that leave the lignin oligomers intact. Finally, ultra-high resolution mass analyzers such as FT-ICR have enabled lignin analysis without major sample preparation and chromatography steps. Concurrent with an increase in the resolution of mass spectrometers, there have been a wealth of complementary data analyses and visualization methods that have allowed researchers to probe deeper into the "lignome" than ever before. These approaches extract trends such as compound series and even important analytical information about lignin substructures without performing lignin degradation either chemically or during MS analysis. These innovative methods are paving the way for a more comprehensive understanding of this important biopolymer, as we seek more sustainable solutions for our human species' energy and materials needs.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
3
|
Application of lithium cationization tandem mass spectrometry for structural analysis of lignin model oligomers with β-β′ and β-O-4′ linkages. Anal Bioanal Chem 2022; 414:5755-5771. [DOI: 10.1007/s00216-022-04111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
|
4
|
Dean KR, Novak B, Moradipour M, Tong X, Moldovan D, Knutson BL, Rankin SE, Lynn BC. Complexation of Lignin Dimers with β-Cyclodextrin and Binding Stability Analysis by ESI-MS, Isothermal Titration Calorimetry, and Molecular Dynamics Simulations. J Phys Chem B 2022; 126:1655-1667. [PMID: 35175769 DOI: 10.1021/acs.jpcb.1c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignin derived from lignocellulosic biomass is the largest source of renewable bioaromatics present on earth and requires environmentally sustainable separation strategies to selectively obtain high-value degradation products. Applications of supramolecular interactions have the potential to isolate lignin compounds from biomass degradation fractions by the formation of variable inclusion complexes with cyclodextrins (CDs). CDs are commonly used as selective adsorbents for many applications and can capture guest molecules in their internal hydrophobic cavity. The strength of supramolecular interactions between CDs and lignin model compounds that represent potential lignocellulosic biomass degradation products can be characterized by assessing the thermodynamics of binding stability. Consequently, the inclusion interactions of β-CD and lignin model compounds G-(β-O-4')-G, G-(β-O-4')-truncG (guaiacylglycerol-β-guaiacyl ether), and G-(β-β')-G (pinoresinol) were investigated empirically by electrospray ionization mass spectrometry and isothermal titration calorimetry, complemented by molecular dynamics (MD) simulations. Empirical results indicate that there are substantial differences in binding stability dependent on the linkage type. The lignin model β-β' dimer showed more potential bound states including 1:1, 2:1, and 1:2 (guest:host) complexation and, based on binding stability determinations, was consistently the most energetically favorable guest. Empirical results are supported by MD simulations that reveal that the capture of G-(β-β')-G by β-CD is promising with a 66% probability of being bound for G-(β-O-4')-truncG compared to 88% for G-(β-β')-G (unbiased distance trajectory and explicit counting of bound states). These outcomes indicate CDs as a promising material to assist in separations of lignin oligomers from heterogeneous mixtures for the development of environmentally sustainable isolations of lignin compounds from biomass fractions.
Collapse
Affiliation(s)
- Kimberly R Dean
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Brian Novak
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mahsa Moradipour
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xinjie Tong
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dorel Moldovan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Barbara L Knutson
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Stephen E Rankin
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
5
|
Kosyakov DS, Pikovskoi II, Ul'yanovskii NV. Dopant-assisted atmospheric pressure photoionization Orbitrap mass spectrometry - An approach to molecular characterization of lignin oligomers. Anal Chim Acta 2021; 1179:338836. [PMID: 34535257 DOI: 10.1016/j.aca.2021.338836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/16/2022]
Abstract
Lignin is the second most abundant biopolymer in nature and is considered an important renewable source of aromatic compounds. One of the most promising analytical methods for molecular characterization of lignin is Orbitrap high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), proved itself in the study of lignins of various origins and their depolymerization products. In this work, the photoionization of lignin using acetone, 1,4-dioxane, and THF as solvents for the biopolymer and APPI dopants providing the generation of protonated and deprotonated molecules of lignin oligomers has been studied. The ionization conditions were optimized on the basis of the dependences of the total ion current on temperature and the flow rate of the solution into the ion source. Lignin degradation processes under APPI conditions occur mainly with the cleavage of ether β-O-4 bonds between phenylpropane structural units, demethylation (negative ion mode), as well as the loss of water and formaldehyde (positive ion mode). Negative ion mode APPI provides a higher ionization efficiency in the region of high molecular weights, however, it is characterized by an increased fragmentation of β-O-4 ether bonds compared to APPI(+) leading to a partial depolymerization of lignin in the ion source. The combination of APPI with Orbitrap high-resolution mass spectrometry allows obtaining mass spectra of coniferous and deciduous wood lignins with resolved fine structure and containing signals of up to 3000 oligomers in the mass range of 300-1800 Da. This can be used for comprehensive characterization of lignins at molecular level and tracking changes in biopolymer chemical composition in various processes.
Collapse
Affiliation(s)
- Dmitry S Kosyakov
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, Arkhangelsk, 163002, Russia.
| | - Ilya I Pikovskoi
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, Arkhangelsk, 163002, Russia
| | - Nikolay V Ul'yanovskii
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, Arkhangelsk, 163002, Russia
| |
Collapse
|
6
|
Anikeenko EA, Rakhmatullina EN, Falev DI, Khoroshev OY, Ul’yanovskii NV, Kosyakov DS. Application of Carbon Matrices to Screening Pentacylic Triterpenoids in Plant Feedstock by MALDI Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820140026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Terrell E, Carré V, Dufour A, Aubriet F, Le Brech Y, Garcia-Pérez M. Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI-FT-ICR-MS Results. CHEMSUSCHEM 2020; 13:4428-4445. [PMID: 32174017 DOI: 10.1002/cssc.202000239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The lack of standards to identify oligomeric molecules is a challenge for the analysis of complex organic mixtures. High-resolution mass spectrometry-specifically, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS)-offers new opportunities for analysis of oligomers with the assignment of formulae (Cx Hy Oz ) to detected peaks. However, matching a specific structure to a given formula remains a challenge due to the inability of FT-ICR MS to distinguish between isomers. Additional separation techniques and other analyses (e.g., NMR spectroscopy) coupled with comparison of results to those from pure compounds is one route for assignment of MS peaks. Unfortunately, this strategy may be impractical for complete analysis of complex, heterogeneous samples. In this study we use computational stochastic generation of lignin oligomers to generate a molecular library for supporting the assignment of potential candidate structures to compounds detected during FT-ICR MS analysis. This approach may also be feasible for other macromolecules beyond lignin.
Collapse
Affiliation(s)
- Evan Terrell
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Anthony Dufour
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 57078, Metz Cedex 03, France
| | - Yann Le Brech
- LRGP, CNRS, Université de Lorraine, ENSIC, 54000, Nancy, France
| | - Manuel Garcia-Pérez
- Biological Systems Engineering, Washington State University, Pullman, Washington, 99163, USA
- Bioproducts, Sciences, & Engineering Laboratory, Washington State University Tri-Cities, Richland, Washington, 99354, USA
| |
Collapse
|
8
|
Zhang J, Feng E, Li W, Sheng H, Milton JR, Easterling LF, Nash JJ, Kenttämaa HI. Studies of the Fragmentation Mechanisms of Deprotonated Lignin Model Compounds in Tandem Mass Spectrometry. Anal Chem 2020; 92:11895-11903. [PMID: 32786494 DOI: 10.1021/acs.analchem.0c02275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jifa Zhang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Erlu Feng
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Wanru Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Huaming Sheng
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jacob R. Milton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Leah F. Easterling
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John J. Nash
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Hilkka I. Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Ayala-Cabrera JF, Santos FJ, Moyano E. Fragmentation studies of neutral per- and polyfluoroalkyl substances by atmospheric pressure ionization-multiple-stage mass spectrometry. Anal Bioanal Chem 2019; 411:7357-7373. [PMID: 31659376 DOI: 10.1007/s00216-019-02150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/25/2022]
Abstract
The establishment of fragmentation pathways has a great interest in the identification of new or unknown related compounds present in complex samples. On that way, tentative fragmentation pathways for the ions generated by atmospheric pressure ionization of neutral per- and polyfluorinated alkyl substances (PFASs) have been proposed in this work. Electrospray (ESI), atmospheric pressure chemical ionization (APCI) and photoionization (APPI) were evaluated using mobile phases and source conditions that enhance the ionization efficiency of ions generated. A hybrid mass spectrometer consisting of a linear ion trap and an Orbitrap was used to combine the information of both multiple-stage mass spectrometry (MSn) and mass accuracy measurements to characterize and establish the genealogical relationship between the product ions observed. The ionization mechanisms to generate ions such as [M-H]-, [M]-•, and [M+O2]-• or the in-source collision-induced dissociation (CID) fragment ions in each API source are discussed in this study. In general, fluorotelomer olefins (FTOs) ionized in negative-ion APCI and APPI generated the molecular ion, while fluorotelomer alcohols (FTOHs) also provided the deprotonated molecule. Besides, fluorooctane sulfonamides (FOSAs) and sulfonamido-ethanols (FOSEs) led to the deprotonated molecule and in-source CID fragment ions, respectively. The fragmentation pathways from these precursor ions mainly involved initial α,β-eliminations of HF units and successive losses of CF2 units coming from the perfluorinated alkyl chain. Moreover, FTOHs and FOSEs showed a high tendency to generate adduct ions under negative-ion ESI and APPI conditions. The fragmentation study of these adduct ions has demonstrated a strong interaction with the attached moiety. Graphical abstract.
Collapse
Affiliation(s)
- Juan F Ayala-Cabrera
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain
| | - F Javier Santos
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.,Research Institute in Water (IdRA), University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain. .,Research Institute in Water (IdRA), University of Barcelona, Montalegre 6, 08001, Barcelona, Spain.
| |
Collapse
|
10
|
Asare SO, Lynn BC. A comparative study of the electrospray ionization response of β-O-4' lignin model compounds. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:540-548. [PMID: 31009548 DOI: 10.1002/jms.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Electrospray ionization mass spectrometry has recently become the technique of choice for rapid characterization of lignin degradation products. However, the fundamental question of the relationship between lignin structure and ionization efficiency has not been explored. In this work, we studied the electrospray ionization response of five structurally similar β-O-4' model lignin compounds using lithium cationization in the positive electrospray ionization mode. The studied compounds have the same β-O-4' backbone structure but differ at the α-position by increasing nonpolar side chains. Our results show a correlation between the ionization response and the length of the nonpolar side chain, with analytes having the longest side chain recording the highest ESI response in the full scan mode. Factors affecting the formation of analyte ions and analyte cluster ions were also studied. We have shown for the first time in this work that the introduction of a nonpolar group onto a β-O-4' lignin compound can increase the lithium cationization ESI response in the positive ion mode.
Collapse
Affiliation(s)
- Shardrack O Asare
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
11
|
Bowman AS, Asare SO, Lynn BC. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis for characterization of lignin oligomers using cationization techniques and 2,5-dihydroxyacetophenone (DHAP) matrix. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:811-819. [PMID: 30719787 DOI: 10.1002/rcm.8406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Effective analytical techniques are needed to characterize lignin products for the generation of renewable carbon sources. Application of matrix-assisted laser desorption/ionization (MALDI) in lignin analysis is limited because of poor ionization efficiency. In this study, we explored the potential of cationization along with a 2,5-dihydroxyacetophenone (DHAP) matrix to characterize model lignin oligomers. METHODS Synthesized lignin oligomers were analyzed using the developed MALDI method. Two matrix systems, DHAP and α-cyano-4-hydroxycinnamic acid (CHCA), and three cations (lithium, sodium, silver) were evaluated using a Bruker UltraFlextreme time-of-flight mass spectrometer. Instrumental parameters, cation concentration, matrix, sample concentrations, and sample spotting protocols were optimized for improved results. RESULTS The DHAP/Li+ combination was effective for dimer analysis as lithium adducts. Spectra from DHP and ferric chloride oligomers showed improved signal intensities up to decamers (m/z 1823 for the FeCl3 system) and provided insights into differences in the oligomerization mechanism. Spectra from a mixed DHP oligomer system containing H, G, and S units showed contributions from all monolignols within an oligomer level (e.g. tetramer level). CONCLUSIONS The DHAP/Li+ method presented in this work shows promise to be an effective analytical tool for lignin analysis by MALDI and may provide a tool to assess lignin break-down efforts facilitating renewable products from lignin.
Collapse
Affiliation(s)
- Amber S Bowman
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Shardrack O Asare
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|