1
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Wu Y, Lv B, Ni X, Zhu S, Li D. "All-U-Want" Strand Displacement Amplification: A Versatile Signal Amplification Method for Nucleic Acid Biosensing. ACS Sens 2025; 10:965-976. [PMID: 39951690 DOI: 10.1021/acssensors.4c02765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Strand displacement amplification (SDA) is an isothermal DNA amplification technique. Herein, we developed a novel SDA system, designated All-U-Want SDA (AUW-SDA), which was used as a signal amplification strategy for the construction of nucleic acid detection biosensors. AUW-SDA is capable of target turnover and can be utilized for detection of nucleic acid sequences without available 3'-ends. Of particular significance is the ability of AUW-SDA to generate a substantial number of programmable sequences in accordance with the specifications of the sensor signal output methods, irrespective of the sequence of the target nucleic acid. We used the N gene of SARS-CoV-2 as a model target to develop a sensing platform with dual signal outputs. The colorimetric signals were generated by the G-quadruplex/hemin DNAzyme, in which the G-rich sequences were produced by AUW-SDA with a C-rich primer. On the other hand, by altering the sequence within the replaceable region of the primer, an activator sequence was obtained from AUW-SDA, which could trigger the activity of CRISPR/Cas12a, cleaving the probes modified with a fluorophore and quencher at each end and subsequently yielding the fluorescent signals. After the DNA sequences and reaction conditions were optimized, the limit of detection (LOD) values of the fluorescent and colorimetric assays were estimated to be 0.672 fM and 13.3 fM, respectively. The biosensors were utilized for biological sample detection. The reliability of the proposed method was validated against RT-qPCR results. In addition, a portable scanner-assisted high-throughput RGB analysis (PSHRA) method was developed. This method was applied to our biosensor for multilocus detection of SARS-CoV-2. The results obtained were satisfactory, indicating the potential of this approach for field testing or point-of-care (POC) diagnostics.
Collapse
Affiliation(s)
- Yapeng Wu
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Bei Lv
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Xintian Ni
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Sheng Zhu
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Mueller BL, Molden TA, Hammock J, Kolpashchikov DM. Tailed molecular beacon probes: an approach for the detection of structured DNA and RNA analytes. Chem Commun (Camb) 2025; 61:2095-2098. [PMID: 39792394 DOI: 10.1039/d4cc05984k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes. Tailed MB probes can be used as mismatched-tolerant alternatives to traditional hairpin probes for fast assays.
Collapse
Affiliation(s)
- Brittany L Mueller
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Tatiana A Molden
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Jordan Hammock
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
- National Center for Forensic Science University of Central Florida, Orlando, Florida 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
4
|
Li C, Zhang J, Gao Y, Luo S, Wu ZS. Nonenzymatic Autonomous Assembly of Cross-Linked Network Structures from Only Two Palindromic DNA Components for Intracellular Fluorescence Imaging of miRNAs. ACS Sens 2022; 7:601-611. [PMID: 35119849 DOI: 10.1021/acssensors.1c02504] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The abnormal expression of miRNA-21 is often found in tumor specimens and cell lines, and thus, its specific detection is an urgent need for the diagnosis and effective therapy of cancers. In this contribution, we demonstrate a palindrome-based hybridization chain reaction (PHCR) upon the stimuli of a short oligonucleotide trigger to perform the autonomous assembly of cross-linked network structures (CNSs) for the amplification detection of miRNA-21 and sensitive fluorescence imaging of cancerous cells. The building blocks are only two palindromic hairpin-type DNA strands that are separately modified with different fluorophores (Cy3 and Cy5), which is easily combined with the catalytic hairpin assembly (CHA) technique that can further amplify the signal output. Utilizing the CHA-PHCR assay system, a small amount of miRNA-21 can activate many triggers via CHA and in turn induce the PHCR-based CNS assembly from more DNA building blocks, bringing Cy3 and Cy5 into close proximity to each other and generating ultrasensitive fluorescence resonance energy transfer signals. As a result, target miRNA can be quantitatively detected down to as low as 10 pM with high assay specificity. The coexisting nontarget miRNAs and other biomacromolecules do not interfere with signal transduction. The developed assay system is suitable for screening different expression levels of miRNA-21 in living cells by fluorescence imaging. The palindrome-based cross-linking assembly can enhance the intracellular stability of assembled nanostructures by at least fivefold and exhibit the good universality for the detection of other miRNAs. Moreover, cancerous cells can be distinguished from healthy cells, and the CHA-PHCR assay is in good accordance with the gold standard PCR method, indicating a promising platform for the diagnosis of human cancers and other genetic diseases.
Collapse
Affiliation(s)
- Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingjing Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
5
|
He S, Li P, Tang L, Chen M, Yang Y, Zeng Z, Xiong W, Wu X, Huang J. Dual-stage amplified fluorescent DNA sensor based on polymerase-Mediated strand displacement reactions. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Yuan R, Tang W, Zhang H, You W, Hu X, Zhang H, Chen L, Nian W, Ding S, Luo Y. Palindromic-assisted self-annealing transcription amplification for reliable genotyping of epidermal growth factor receptor exon mutations. Biosens Bioelectron 2021; 194:113633. [PMID: 34543825 DOI: 10.1016/j.bios.2021.113633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Reliable discrimination of specific epidermal growth factor receptor (EGFR) gene mutations plays a critical role in guiding lung cancer therapeutics. Until now, convenient and accurate recognition of the specific deletion of EGFR exons has remained particularly challenging. Herein, we propose a palindromic-assisted self-annealing transcription amplification (PASTA) strategy for the reliable detection of circulating EGFR exon mutations. We designed a palindromic DNA hairpin nanorobot consisting of a palindromic tail, a T7 promoter, a target recognition region, and a transcription template. The nanorobot enabled prompt self-assembly into a target-hairpin/hairpin-target dimer in the presence of single-stranded DNA target and further triggered in vitro transcription. In a proof-of-concept experiment for detecting circulating 15n-del EGFR mutation, a detection limit of 0.8 fM and a linear detection range of 1 fM to 100 pM was achieved, and an accuracy of 100% was reached in clinical validation by analyzing 20 samples from clinical lung cancer patients. Empowered by the intrinsic sensitivity and selectivity, the proposed PASTA approach will lead to the development of a universal platform for reliable molecular subtyping.
Collapse
Affiliation(s)
- Rui Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China; College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Wenxin You
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China; Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Xiaolin Hu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Ling Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, PR China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
7
|
Gao Z, Ren F, Yang G, Feng G, Wu L, Huang G, Chen Q. A highly sensitive electrochemical aptasensor for vascular endothelial growth factor detection based on toehold-mediated strand displacement reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4934-4940. [PMID: 34612218 DOI: 10.1039/d1ay01263k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An electrochemical aptasensor with high sensitivity, specificity, and good intra-day reproducibility is reported to meet the detection needs of vascular endothelial growth factor (VEGF). The toehold-mediated strand displacement recycling amplification and VEGF aptamer are integrated in the biosensor. The probe A is hybridized with the VEGF aptamer to form the probe A-aptamer complex. When VEGF is introduced, the aptamer specifically binds with VEGF, and probe A can be liberated. Then, the free probe A captures the toehold region of the Hp1, leading the exposure of the toehold region on the other end of Hp1. Similarly, Hp2 and Hp3 are also immobilized on the surface of the electrode; thus, the methylene blue labelled on Hp2 and Hp3 causes the current response. With the signal transduction mechanism, the expression level of VEGF can be detected quantitatively. With a series of optimizations of sensor parameters, high sensitivity and specificity of the VEGF detection sensor can be achieved with a detection limit as low as 10 pg mL-1. This significant performance has good intra-day reproducibility, and it can be applied to human biological samples such as serum, urine, and saliva to detect the VEGF content.
Collapse
Affiliation(s)
- Zhong Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Fuyong People's Hospital, Shenzhen, Guangdong, 518103, China.
| | - Fangling Ren
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guangyi Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Guangjun Feng
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| | - Guiling Huang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Yangtze University, Health Science Center, Jingzhou, Hubei, 434025, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518101, China.
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, 442008, China.
| |
Collapse
|
8
|
Wang L, Dai X, Feng Y, Zhao Q, Liu L, Xue C, Xiao L, Wang R. Dual Catalytic Hairpin Assembly-Based Automatic Molecule Machine for Amplified Detection of Auxin Response Factor-Targeted MicroRNA-160. Molecules 2021; 26:molecules26216432. [PMID: 34770841 PMCID: PMC8588017 DOI: 10.3390/molecules26216432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNA160 plays a crucial role in plant development by negatively regulating the auxin response factors (ARFs). In this manuscript, we design an automatic molecule machine (AMM) based on the dual catalytic hairpin assembly (D-CHA) strategy for the signal amplification detection of miRNA160. The detection system contains four hairpin-shaped DNA probes (HP1, HP2, HP3, and HP4). For HP1, the loop is designed to be complementary to miRNA160. A fragment of DNA with the same sequences as miRNA160 is separated into two pieces that are connected at the 3′ end of HP2 and 5′ end of HP3, respectively. In the presence of the target, four HPs are successively dissolved by the first catalytic hairpin assembly (CHA1), forming a four-way DNA junction (F-DJ) that enables the rearrangement of separated DNA fragments at the end of HP2 and HP3 and serving as an integrated target analogue for initiating the second CHA reaction, generating an enhanced fluorescence signal. Assay experiments demonstrate that D-CHA has a better performance compared with traditional CHA, achieving the detection limit as low as 10 pM for miRNA160 as deduced from its corresponding DNA surrogates. Moreover, non-target miRNAs, as well as single-base mutation targets, can be detected. Overall, the D-CHA strategy provides a competitive method for plant miRNAs detection.
Collapse
Affiliation(s)
- Lei Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Xing Dai
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Yujian Feng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Qiyang Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence: (C.X.); (L.X.); (R.W.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
- Correspondence: (C.X.); (L.X.); (R.W.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
- Correspondence: (C.X.); (L.X.); (R.W.)
| |
Collapse
|
9
|
Berneschi S, D'Andrea C, Baldini F, Banchelli M, de Angelis M, Pelli S, Pini R, Pugliese D, Boetti NG, Janner D, Milanese D, Giannetti A, Matteini P. Ion-exchanged glass microrods as hybrid SERS/fluorescence substrates for molecular beacon-based DNA detection. Anal Bioanal Chem 2021; 413:6171-6182. [PMID: 34278523 DOI: 10.1007/s00216-021-03418-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
Ion-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.) represents a well-established technique able to modify the chemical-physical properties of glass materials. It is widely used not only in the field of integrated optics (IO) but also, more recently, in plasmonics due to the possibility to induce the formation of metal nanoparticles in the glass matrix by an ad hoc thermal post-process. In this work, the application of this technology for the realisation of low-cost and stable surface-enhanced Raman scattering (SERS) active substrates, based on soda-lime glass microrods, is reported. The microrods, with a radius of a few tens of microns, were obtained by cutting the end of an ion-exchanged soda-lime fibre for a length less than 1 cm. As ion source, silver nitrate was selected due to the outstanding SERS properties of silver. The ion-exchange and thermal annealing post-process parameters were tuned to expose the embedded silver nanoparticles on the surface of the glass microrods, avoiding the use of any further chemical etching step. In order to test the combined SERS/fluorescence response of these substrates, labelled molecular beacons (MBs) were immobilised on their surface for deoxyribonucleic acid (DNA) detection. Our experiments confirm that target DNA is attached on the silver nanoparticles and its presence is revealed by both SERS and fluorescence measurements. These results pave the way towards the development of low-cost and stable hybrid fibres, in which SERS and fluorescence interrogation techniques are combined in the same optical device.
Collapse
Affiliation(s)
- Simone Berneschi
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Cristiano D'Andrea
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Marella de Angelis
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Pelli
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Roberto Pini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Diego Pugliese
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Nadia G Boetti
- Fondazione LINKS-Leading Innovation and Knowledge for Society, via P. C. Boggio 61, 10138, Turin, Italy
| | - Davide Janner
- Department of Applied Science and Technology and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Daniel Milanese
- Department of Engineering and Architecture and RU INSTM, Università di Parma, Parco Area delle Scienze 181/A, 43124, Parma, Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", IFAC - CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
10
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
11
|
Periodically programmed building and collapse of DNA networks enables an ultrahigh signal amplification effect for ultrasensitive nucleic acids analysis. Anal Chim Acta 2021; 1150:338221. [PMID: 33583542 DOI: 10.1016/j.aca.2021.338221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/21/2022]
Abstract
ANALYSIS of molecular species is needed for applications in diagnosis of infections and genetic diseases. Herein, we demonstrate a target DNA-responsive ultrahigh fluorescence signal-on DNA amplification system via periodically programmed building and collapse of DNA networks. In this system, a pair of oligonucleotides of padlock probe (PP) and palindromic hairpin probe (PHP) are utilized. The presence of target DNA firstly hybridizes with PP, allowing the occurrence of rolling circle amplification (RCA) to produce RCA products with tandem repeats in abundance to bind and unfold numbers of PHPs. The conformational change of PHPs enables the building of DNA networks via the intermolecular palindrome pairing, but then makes the DNA networks collapsed via the palindrome-induced strand displacement polymerization. The displaced RCA products are dynamically reused to undergo periodically programmed multiple rounds of DNA network building and collapse. Depend on the bidirectional DNA assembly and disassembly, a strikingly amplified fluorescence can be collected to ultrasensitive and specific detection of target DNA. The practicability has been demonstrated by evaluating target-spiked human serum, saliva, and urine samples with acceptable recoveries and reproducibility. Therefore, this newly explored method opens a promising avenue for the detection of nucleic acids with low abundance in biochemical analysis and diseases diagnosis.
Collapse
|
12
|
Wang X, Xu J, Qin P, Yan C, Liu G, Chen W. Self-assembly of a polythymine embedded activatable molecular beacon for one-step quantification of terminal deoxynucleotidyl transferase activity. Anal Chim Acta 2020; 1141:127-135. [PMID: 33248645 DOI: 10.1016/j.aca.2020.10.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
We describe an isothermal, single-reaction, and one-step method for signal-on quantification of terminal deoxynucleotidyl transferase (TdT) activity based on the periodic elongation and assembly of polythymine embedded activatable molecular beacon (PTA-MB) into DNA nanostructures. PTA-MB is easily designed according to the rule of the conventional molecular beacon (MB) but engineered with a polyT composed loop. Upon exposure to the specific target TdT, the MB is first elongated with an adenine-rich (A-rich) long chain so that it can then act as the anchoring substrate to capture many original PTA-MBs along its strand. Their unfolding contributes to preliminary fluorescence emission. Significantly, the assembled PTA-MBs can also be elongated and hybridized with residual free PTA-MBs for the second round of signal amplification. Accordingly, multiple rounds of elongation, assembly, and activation of initial PTA-MBs can lead to the formation of DNA nanostructures and induce a dramatically enhanced fluorescence signal for qualitative and quantitative evaluation of TdT activity. The final assay indicated a limit of detection (LOD) of 0.042 U mL-1 TdT and showed excellent selectivity for TdT versus other common enzymes. Moreover, the practical applicability was validated by direct/absolute quantification of TdT in real biological specimens and accurate monitoring of the activity of TdT pretreated by low/high temperature and heavy metal ions. These findings demonstrated that this functional PTA-MB and its unique assembly behavior is most likely to promote the study of oligonucleotide probe-based DNA assembly, providing a reliable, convenient, and universal platform for precise and point-of-care monitoring of various biomolecules.
Collapse
Affiliation(s)
- Xinxin Wang
- Engineering Research Center of Bio-process, MOE, School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Panzhu Qin
- Engineering Research Center of Bio-process, MOE, School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chao Yan
- Engineering Research Center of Bio-process, MOE, School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, 233100, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
13
|
Shu Q, Liao F, Hong N, Cheng L, Lin Y, Cui H, Su J, Ma G, Wei G, Zhong Y, Xiong J, Fan H. A novel DNA sensor of homogeneous electrochemical signal amplification strategy. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Zhang Q, Liu Y, Nie Y, Liu Y, Ma Q. Wavelength-Dependent Surface Plasmon Coupling Electrochemiluminescence Biosensor Based on Sulfur-Doped Carbon Nitride Quantum Dots for K-RAS Gene Detection. Anal Chem 2019; 91:13780-13786. [DOI: 10.1021/acs.analchem.9b03212] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qian Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
15
|
Lee S, Jang H, Kim HY, Park HG. Three-way junction-induced isothermal amplification for nucleic acid detection. Biosens Bioelectron 2019; 147:111762. [PMID: 31654822 DOI: 10.1016/j.bios.2019.111762] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023]
Abstract
We, herein, describe a three-way junction (3WJ)-induced isothermal amplification (ThIsAmp) reaction for target nucleic acid detection. In this strategy, target nucleic acid induces the formation of 3WJ structure by associating a specially designed ThIsAmp template and ThIsAmp primer. Upon the formation of 3WJ structure, ThIsAmp primer is subjected to continuously repeated extension and nicking reaction by the combined activities of DNA polymerase and nicking endonuclease, consequently producing a large number of trigger strands. The trigger strands then initiate two separate but interconnected pathways by binding to either 3' overhang of ThIsAmp template within the 3WJ structure or free ThIsAmp template. As a consequence, a large number of final double-stranded DNA products are produced under an isothermal condition, which can be monitored in real-time by detecting the fluorescence intensity resulting from SYBR Green I staining. Based on this principle, we successfully detected target DNA down to 78.1 aM with excellent specificity. The sophisticated design principle employed in this work would provide great insight for the development of self-operative isothermal amplifying system enabling target nucleic acid detection.
Collapse
Affiliation(s)
- Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyowon Jang
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-338, Republic of Korea.
| |
Collapse
|
16
|
Zhao W, Liu M, Li H, Wang S, Tang S, Kong RM, Yu R. Ultra-sensitive label-free electrochemical detection of the acute leukaemia gene Pax-5a based on enzyme-assisted cycle amplification. Biosens Bioelectron 2019; 143:111593. [DOI: 10.1016/j.bios.2019.111593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/31/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
|