1
|
Jiang L, Liao J, Nie L, Dong G, Song D, Tang G, Zhou Q. Dual COF functionalized magnetic MXene composite for enhancing magnetic solid phase extraction of thiophene compounds from oilfield produced waters prior to GC-MS/MS analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135653. [PMID: 39217939 DOI: 10.1016/j.jhazmat.2024.135653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel COFTABT@COFTATp modified magnetic MXene composite (CoFe2O4 @Ti3C2 @COFTABT@COFTATp) was synthesized by Schiff base reaction and irre-versible enol-keto tautomerization, and employed to establish a sensitive monitoring method for six thiophene compounds in oilfield produced water samples based on magnetic solid-phase extraction (MSPE) prior to gas chromatography coupled with a triple quadruple mass spectrometer (GC-MS/MS). The designed magnetic materials exhibited unexpected enrichment ability to target thiophene compounds and achieved good extraction efficiencies ranging from 83 % to 98 %. The developed MSPE/GC-MS/MS method exhibited good linearity in the range of 0.001-100 μg L-1, and obtained lower limits of detection ranging from 0.39 to 1.9 ng L-1. The spiked recoveries of thiophene compounds obtained in three oilfield produced water samples were over the range of 96.26 %-99.54 % with relative standard deviations (RSDs) less than 3.7 %. Notably, benzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene were detected in three oilfield-produced water samples. Furthermore, the material still kept favorable stability after six recycling experiments. The adsorption kinetics, adsorption isotherms as well as adsorption thermodynamics of thiophene compounds were investigated in detail to provide insight into the mechanisms. Overall, the present work contributed a promising strategy for designing and synthesizing new functionalized materials for the enrichment and detection of typical pollutants in the environment.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guojin Tang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
2
|
Gwak J, Cha J, Nam SI, Kim JH, Lee J, Moon HB, Khim JS, Hong S. Characterization of AhR-mediated potency in sediments from Kongsfjorden, Svalbard: Application of effect-directed analysis and nontarget screening. CHEMOSPHERE 2024; 368:143771. [PMID: 39566688 DOI: 10.1016/j.chemosphere.2024.143771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
In this study, we aimed to identify the major aryl hydrocarbon receptor (AhR) agonists in surface sediments (S1-S10, n = 10) from Kongsfjorden, Arctic Svalbard, using effect-directed analysis. High AhR-mediated potencies were observed in the mid-polar fractions and RP-HPLC subfractions (F2.6-F2.8; log KOW 5-8) in the sediments of sites S2 and S3, which are located near abandoned coal mine areas, as assessed by the H4IIE-luc bioassay. The concentrations of traditional polycyclic aromatic hydrocarbon (t-PAHs), emerging PAHs, alkyl-PAHs, and styrene oligomers ranged from 6.1 to 2100 ng g-1 dry weight (dw), 0.5-1000 ng g-1 dw, 47 to 79,000 ng g-1 dw, and 4.2-130 ng g-1 dw, respectively, with elevated levels in S2 and S3. Principal component analysis coupled with multiple linear regression suggested that t-PAHs in sediments primarily originated from coal, petroleum combustion, and coal combustion. Twenty-four target AhR agonists accounted for 3.2%-100% (mean = 47%) of the total AhR-mediated potencies in S2 and S3. Nontarget screening via GC-QTOFMS in the highly potent fractions identified 48 AhR agonist candidates through four-step selection criteria. Among these, 27 compounds were identified as coal-derived substances. VirtualToxLab in silico modeling predicted that most of the 48 tentative AhR agonist candidates could bind to AhR. Overall, our findings indicate significant contamination of the Kongsfjorden sediments by coal-derived substances, highlighting the need for further studies to assess the ecological risks associated with these contaminants.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jihyun Cha
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Il Nam
- Division of Glacier and Earth Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jung-Hyun Kim
- Division of Glacier and Earth Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Junghyun Lee
- Department of Environmental Education, Kongju National University, Gongju, 32588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seongjin Hong
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Miki Y, Murakami H, Gotoh M, Umemura T, Esaka Y, Inoue Y, Teshima N. Novel chemically cross-linked self-molding particulate sorbents as solid-phase extraction media. ANAL SCI 2022; 39:749-754. [PMID: 36001293 DOI: 10.1007/s44211-022-00179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Here, we describe novel, chemically cross-linked, self-molding particulate polymer sorbents that are utilized as a molding-type solid-phase extraction medium (M-SPEM), which exhibits high permeability and rigidness. To fabricate such M-SPEM, first, polyethyleneimine (PEI)-modified reversed-phase (RP)-type particulate sorbents were synthesized, thereafter, they were chemically cross-linked by a polymer having many epoxy groups together with additional PEI. By optimizing the binding conditions of the particulate sorbents, the resultant M-SPEM has almost the same adsorption properties as the corresponding unmolded particulate sorbent for some polar (e.g., uracil and adenine) compounds. The binding technique proposed here is expected to facilitate the fabrication of molding-type sorbents and improve the performance of the SPE procedure.
Collapse
Affiliation(s)
- Yuta Miki
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Hiroya Murakami
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan.
| | - Marin Gotoh
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Tomonari Umemura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, 192-0392, Japan
| | - Yukihiro Esaka
- Gifu Pharmaceutical University, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yoshinori Inoue
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| | - Norio Teshima
- Department of Applied Chemistry, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota, 470-0392, Japan
| |
Collapse
|
4
|
Preparation of monolith-based adsorbent containing abundant functional groups for field entrapment of nitrogen and sulfur containing aromatic compounds in environmental aqueous samples with portable multichannel in-tip microextraction device. J Chromatogr A 2022; 1676:463260. [PMID: 35772365 DOI: 10.1016/j.chroma.2022.463260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022]
Abstract
Field sample preparation is important and interesting for analysis of nitrogen and sulfur containing aromatic compounds (N,S-CACs) in environmental aqueous samples. In this connection, a new functional groups-rich adsorbent based on porous monolith (ABM) was fabricated by in-situ copolymerization of allylaminocarbonylphenyl boronic acid/styrene and ethylene glycol dimethacrylate. The prepared ABM was employed as the extraction medium of homemade portable multichannel in-tip microextraction device (PMMD) for on-site entrapment of N,S-CACs in various waters. Because of the abundant functional groups, the obtained ABM/PMMD exhibited satisfactory capture capability towards studied N,S-CACs, and the enrichment factors varied from 454 to 491. Under the optimized fabrication conditions, adsorption and desorption parameters, the developed ABM/PMMD was used to field capture investigated N,S-CACs and followed by quantification with high performance liquid chromatography. The limits of detection were in the ranges of 0.00030-0.0016 µg/L. Recoveries with low, medium and high spiked contents located in the range of 82.1-118% with good repeatability (RSDs<9%). In addition, traditional laboratory sample pretreatment approach was employed to verify the reliability of the established method. Results well evidenced that the practicability of introduced ABM/PMMD in the field sample preparation of N,S-CACs in environmental waters.
Collapse
|
5
|
Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Development of magnetism-reinforced in-tube solid phase microextraction combined with HPLC for the sensitive quantification of cobalt(II) and nickel(II) in environmental waters. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|