1
|
Tian Q, Zhou H, Wang R, Xu L, Chen J, Zong C. Manganese porphyrin wrapped DNA dendrimer as a universal chemiluminescence tag for ultrasensitive and multiplex assay of mycotoxins. Talanta 2025; 285:127418. [PMID: 39709826 DOI: 10.1016/j.talanta.2024.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
A manganese porphyrin wrapped DNA dendrimer (Mn-DD) was developed through enzyme-free DNA self-assembly and simple and mild groove binding of porphyrin. The Mn-DD not only possessed plenty of manganese porphyrin to amplify the chemiluminescence (CL) signal, but also can be modified with diverse groups via DNA hybridization. Combined with an immunosensor array, Mn-DD can be utilized for CL immunoassay of multiple mycotoxins as a universal tag. Under optimal conditions, Mn-DD-based CL imaging immunoassay of aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) exhibited broad linear ranges over 4 orders of magnitude and detection limits as low as 0.87, 0.75, and 0.79 pg mL-1, respectively. It was also utilized in the examination of real coix seed samples, yielding reliable results. High sensitivity, as well as simple operation, low reagent dosage, acceptable accuracy and stability showed the tag and the approach broad application prospects in quality control of food and medicine.
Collapse
Affiliation(s)
- Qiushuang Tian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Haoyan Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ruike Wang
- College of Pharmacy, Xinjiang Second Medical College, Karamay, 834000, PR China
| | - Ling Xu
- NMPA Key Laboratory of Quality Control of Chinese Medicine (HuBei), Wuhan, 430075, PR China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Chen Zong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Qin X, Jahanghiri S, Zhan Z, Chu K, Khangura J, Ding Z. Quantification strategy of absolute chemiluminescence efficiency for systems of luminol with hydrogen peroxide. Anal Chim Acta 2024; 1285:342023. [PMID: 38057060 DOI: 10.1016/j.aca.2023.342023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
An important feature to be determined in mechanistic studies on chemiluminescence (CL) is its quantum efficiency, which can give significant chemical reaction information on the influence of the reactant structures and reaction conditions. However, most of the previous quantitative measurements of luminescence and quantum efficiencies are complex and incomplete. To overcome the inconvenience and underestimated quantum efficiency in each measurement, we report a simple and highly effective strategy to determine the absolute CL quantum efficiencies for three systems of luminol with hydrogen peroxide by means of a spectrometer along with an integrating sphere. The integrating sphere facilitated collection of all the emitted light and then transferred it to the spectrometer via an optical fiber proportionally. The CL quantum efficiency was determined by taking the ratio of total photons generated in the reaction system to the number of the limiting reactant molecules consumed. Absolute CL efficiencies of three luminol-H2O2 reaction systems with varied reactant concentrations or coreactants were found to be 37 %, 7.0 % and 6.6 % in a time course, which are much higher than those previously reported values of 1.0-1.3 %. Due to our complete photon collection design, a higher absolute CL efficiency can be realized. Furthermore, spooling CL spectra also provided a powerful visualization tool to observe the real-time CL evolution and devolution, allowing the study on kinetics of CL reaction systems. The above investigations are anticipated to promote further development of CL methodologies and their applications.
Collapse
Affiliation(s)
- Xiaoli Qin
- Department of Chemistry, Western University, London, ON, N6A 5B7, Canada; College of Chemistry and Material Science, Hunan Agricultural University, Changsha, 410128, China
| | - Sara Jahanghiri
- Department of Chemistry, Western University, London, ON, N6A 5B7, Canada
| | - Ziying Zhan
- Department of Chemistry, Western University, London, ON, N6A 5B7, Canada
| | - Kenneth Chu
- Department of Chemistry, Western University, London, ON, N6A 5B7, Canada
| | - Jugraj Khangura
- Department of Chemistry, Western University, London, ON, N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry, Western University, London, ON, N6A 5B7, Canada.
| |
Collapse
|
3
|
Zhang X, Jia Y, Fei Y, Lu Y, Liu X, Shan H, Huan Y. Cu/Au nanoclusters with peroxidase-like activity for chemiluminescence detection of α-amylase. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1553-1558. [PMID: 36883451 DOI: 10.1039/d3ay00029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, a novel chemiluminescence method was developed for efficient and sensitive detection of α-amylase activity. α-Amylase is closely related to our life, and α-amylase concentration is a marker for the diagnosis of acute pancreatitis. In this paper, Cu/Au nanoclusters with peroxidase-like activity were prepared using starch as a stabilizer. Cu/Au nanoclusters can catalyze H2O2 to generate reactive oxygen species and increase the CL signal. The addition of α-amylase makes the starch decompose and causes the nanoclusters to aggregate. The aggregation of the nanoclusters caused them to increase in size and decrease in the peroxidase-like activity, resulting in a decrease in the CL signal. α-Amylase was detected by the CL method of signal changes caused by dispersion-aggregation in the range of 0.05-8 U mL-1 with a low detection limit of 0.006 U mL-1. The chemiluminescence scheme based on the luminol-H2O2-Cu/Au NC system is of great significance for the sensitive and selective determination of α-amylase in real samples, and the detection time is short. This work provides new ideas for the detection of α-amylase based on the chemiluminescence method and the signal lasts for a long time, which can realize timely detection.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Yuying Jia
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Yanqun Fei
- Changchun Zhuoyi Biological Co., Ltd., Changchun, 130616, People's Republic of China
| | - Yongzhuang Lu
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Xiaoli Liu
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| |
Collapse
|
4
|
Fernandes T, Daniel-da-Silva AL, Trindade T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Yan X, Zhao K, Yang Y, Qiu A, Zhang X, Liu J, Zha C, Mai X, Ai F, Zheng X. Utilizing dual carriers assisted by enzyme digestion chemiluminescence signal enhancement strategy simultaneously detect tumor markers CEA and AFP. ANAL SCI 2022; 38:889-897. [PMID: 35403957 DOI: 10.1007/s44211-022-00109-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
To measure two tumor biomarkers, alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA), a dual-carrier CL sensor with restriction enzyme digestion (Exo I) and aptamer technology utilizing gold nanoparticles (hydroxylamine amplification) and horseradish peroxidase (HRP) as the CL signal enhancement in the sensing strategy was formed. These nanoparticles and nano-enzyme were precisely detected and tagged to the appropriate position attributable to the particular recognition of biotin and streptavidin. In this sensing strategy, target markers were further enriched and recognized sensitively by CL following enrichment, and matching strong chemical signals were collected under luminol catalysis, allowing for marker identification. For CEA (0.1-80 ng/mL) and AFP (2-500 ng/mL), the proposed method has a large linear range, with detection limits of 36.6 pg/mL and 0.94 ng/mL, respectively.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Kun Zhao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yunting Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Aojun Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xinlei Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Jie Liu
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Chengyi Zha
- Department of Pharmacy, The 3rd People's Hospital, Jingdezhen, 333000, China
| | - Xi Mai
- School of Pharmacy, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Fanrong Ai
- School of Mechanical & Electrical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
6
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|