1
|
Wang J, Zhao H, Zhou Y, Yan Y, Fang Z, Geng Y. Electrochemical sensing of Hg(II) ions based on ultramicrotome-crafted strip ultramicroelectrode. Talanta 2025; 287:127670. [PMID: 39908895 DOI: 10.1016/j.talanta.2025.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
The presence of heavy metal ions in the biosphere constitutes a significant source of pollution, posing severe threats to both human health and the environment. Thus, the accurate detection of heavy metal ions assumes paramount importance. The present study involves the preparation of electrochemical sensors based on strip ultramicroelectrode, enabling the detection of Hg2+. The electrochemical performance of strip ultramicroelectrode is characterized firstly. The Au strip ultramicroelectrode demonstrates exceptional suitability for the detection of Hg2+. Moreover, the acetate buffer is confirmed as an advantageous detection medium for Hg2+ owing to its slight influence on the result. The electrochemical detection parameters of the strip ultramicroelectrode, such as the pH value of the acetate buffer, enrichment potential, and enrichment time, have been optimized. The prepared electrochemical sensors based on strip ultramicroelectrode are utilized to detect the Hg2+ in tap water, snow melt water and bottled water. The detection limitation exceeds the thresholds established by the drinking water quality standards of China, the World Health Organization, and the European Union. The sensor prepared based on the strip ultramicroelectrode has exceptional accuracy, reliability, and practical applicability.
Collapse
Affiliation(s)
- Jiqiang Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hainan Zhao
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yekuan Zhou
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yongda Yan
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhuo Fang
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yanquan Geng
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Chen X, Dai Q, Qiu X, Luo X, Li Y. New nanosensor fabricated on single nanopore electrode filled with prussian blue and graphene quantum dots coated by polypyrrole for hydrogen peroxide sensing. Talanta 2024; 274:126043. [PMID: 38581852 DOI: 10.1016/j.talanta.2024.126043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/06/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Hydrogen peroxide (H2O2) is a common oxidant that plays an important role in many biological processes and is also an important medium analysis in various fields. In this work, a new electrochemical nanosensor capable of detecting and quantifying hydrogen peroxide was introduced. This nanosensor was fabricated by electrodepositing prussian blue (PB)/graphene quantum dots (GQDs)/polypyrrole (PPy) on single nanopore electrode etched from single gold nanoelectrode. This prepapred nanosensor exhibits good electrochemical response to hydrogen peroxide with high sensitivity and stability, with a linear response in the 2.0 and 80 μM by using amperometric method and differential pulse voltammetry (DPV) method. The limit of detections are 0.33 μM (S/N = 3) for amperometric method and 0.67 μM (S/N = 3) for differential pulse voltammetry (DPV) method, respectively. This nanosensor can be used for the determination of hydrogen peroxide in human urine, and can serve as a new electrochemical platform to monitor H2O2 release from single living cells due to its small overal dimension and high sensitivity.
Collapse
Affiliation(s)
- Xiaohu Chen
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Qingshan Dai
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xia Qiu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xianzhun Luo
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
3
|
Jiao YT, Kang YR, Wen MY, Wu HQ, Zhang XW, Huang WH. Fast Antioxidation Kinetics of Glutathione Intracellularly Monitored by a Dual-Wire Nanosensor. Angew Chem Int Ed Engl 2023; 62:e202313612. [PMID: 37909054 DOI: 10.1002/anie.202313612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells. These measurements revealed that the glutathione peroxidase (GPx) in the GSH system is rapidly initiated against ROS burst in a sub-second time scale, but the elimination process is short-lived, ending after a few seconds, while some ROS are still present in the cells. This study is expected to open new perspectives for understanding the GSH antioxidant system and studying some redox imbalance-related physiological.
Collapse
Affiliation(s)
- Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Ran Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Cathodic photoelectrochemical sensor developed for glutathione detection based on carrier transport in a Ti3C2Tx/AgI heterojunction. Anal Chim Acta 2022; 1233:340487. [DOI: 10.1016/j.aca.2022.340487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022]
|
5
|
Wang W, Chen J, Zhou Z, Zhan S, Xing Z, Liu H, Zhang L. Ultrasensitive and Selective Detection of Glutathione by Ammonium Carbamate-Gold Platinum Nanoparticles-Based Electrochemical Sensor. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081142. [PMID: 36013320 PMCID: PMC9410014 DOI: 10.3390/life12081142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Determining the concentration of glutathione is crucial for developing workable medical diagnostic strategies. In this paper, we developed an electrochemical sensor by electrodepositing amino-based reactive groups and gold–platinum nanomaterials on the surface of glassy carbon electrode successively. The sensor was characterized by cyclic voltammetry (CV), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and electrochemical impedance spectra (EIS). Results showed that Au@Pt nanoparticles with the size of 20–40 nm were presented on the surface of electrode. The sensor exhibits excellent electrocatalytic oxidation towards glutathione. Based on this, we devised an electrochemical biosensor for rapid and sensitive detection of glutathione. After optimizing experimental and operational conditions, a linear response for the concentration of GSH, in the range of 0.1–11 μmol/L, with low detection and quantification limits of 0.051 μM (S/N = 3), were obtained. The sensor also exhibits superior selectivity, reproducibility, low cost, as well as simple preparation and can be applied in human serum sample detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongying Liu
- Correspondence: (H.L.); (L.Z.); Tel.: +86-571-87713533 (H.L.)
| | - Linan Zhang
- Correspondence: (H.L.); (L.Z.); Tel.: +86-571-87713533 (H.L.)
| |
Collapse
|
6
|
Qiu X, Tang H, Dong J, Wang C, Li Y. Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing. Anal Chem 2022; 94:8202-8208. [PMID: 35642339 DOI: 10.1021/acs.analchem.2c00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle collisions have made many achievements in basic research, but challenges still exist due to their low collision frequency and selectivity in complex samples. In this work, we developed an "on-off-on" strategy based on Pt nanoparticles (PtNPs) that catalyze N2H4 collision signals on the surface of carbon ultramicroelectrodes and established a new method for the detection of miRNA21 with high selectivity and sensitivity. PtNPs catalyze the reduction of N2H4 on the surface of carbon ultramicroelectrodes to generate a stepped collision signal, which is in the "on" state. The single-stranded DNA paired with miRNA21 is coupled with PtNPs to form the complex DNA/PtNPs. Because PtNPs are covered by DNA, the electrocatalytic collision of N2H4 oxidation is inhibited. At this time, the signal is in the "off" state. When miRNA21 is added, the strong complementary pairing between miRNA21 and DNA destroys the electrostatic adsorption of DNA/PtNP conjugates and restores the electrocatalytic performance of PtNPs, and the signal is in the "on" state again. Based on this, a new method for detecting miRNA21 was established. It provides a new way for small-molecule sensing and has a wide range of applications in electroanalysis, electrocatalysis, and biosensing.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Jingyi Dong
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Chaohui Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|