1
|
Cao L, Chen W, Kang W, Lei C, Nie Z. Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing. Anal Bioanal Chem 2025; 417:1699-1711. [PMID: 39601843 DOI: 10.1007/s00216-024-05678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The precise target recognition and nuclease-mediated effective signal amplification capacities of CRISPR-Cas systems have attracted considerable research interest within the biosensing field. Guided by insights into their structural and biochemical mechanisms, researchers have endeavored to engineer the key biocomponents of CRISPR-Cas systems with stimulus-responsive functionalities. By the incorporation of protein/nucleic acid engineering techniques, a variety of conditional CRISPR-Cas systems whose activities depend on the presence of target triggers have been established for the efficient detection of diverse types of non-nucleic acid analytes. In this review, we summarized recent research progress in engineering Cas proteins, guide RNA, and substrate nucleic acids to possess target analyte-responsive abilities for diverse biosensing applications. Furthermore, we also discussed the challenges and future possibilities of the stimulus-responsive CRISPR-Cas systems in versatile biosensing.
Collapse
Affiliation(s)
- Linxin Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenhui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, Hainan, China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
2
|
Wang J, Zhang F, Liu Z, Zhou Y, Pei L, Yan B. A novel biosensor for highly sensitive DNA damage detection using TdT and CRISPR-Cas12a. Analyst 2025; 150:1076-1080. [PMID: 39992145 DOI: 10.1039/d5an00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This study presents a highly sensitive fluorescence biosensor integrating TdT enzyme and CRISPR-Cas12a for precise detection of sperm DNA damage, achieving a detection limit of 0.99 pM and a linear range of 0.001-0.2 nM. Its exceptional sensitivity, simplicity, and versatility make it a transformative tool for reproductive medicine and clinical diagnostics.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Fan Zhang
- Reproductive Medical Center, Yinchuan women and children healthcare hospital, Yinchuan, 750001, China
| | - Ziyang Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Yue Zhou
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Liguo Pei
- Reproductive Medical Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Bei Yan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Sumanto Marpaung DS, Yap Sinaga AO, Damayanti D, Taharuddin T, Gumaran S. Current biosensing strategies based on in vitro T7 RNA polymerase reaction. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2025; 6:59-66. [PMID: 39902056 PMCID: PMC11788683 DOI: 10.1016/j.biotno.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
Recently, a unique behavior of T7 RNA polymerase has expanded its functionality as a biosensing platform. Various biosensors utilizing T7 RNA polymerase, combined with fluorescent aptamers, electrochemical probes, or CRISPR/Cas systems, have been developed to detect analytes, including nucleic acids and non-nucleic acid target, with high specificity and low detection limits. Each approach demonstrates unique strengths, such as real-time monitoring and minimal interference, but also presents challenges in stability, cost, and reaction optimization. This review provides an overview of T7 RNA polymerase's role in biosensing technology, highlighting its potential to advance diagnostics and molecular detection in diverse fields.
Collapse
Affiliation(s)
- David Septian Sumanto Marpaung
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Ayu Oshin Yap Sinaga
- Department of Biology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Damayanti Damayanti
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - Taharuddin Taharuddin
- Department of Chemical Engineering, University of Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro No.1, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung, 35141, Indonesia
| | - Setyadi Gumaran
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| |
Collapse
|
4
|
Gao Y, Ang YS, Yung LYL. One-Pot Detection of Proteins Using a Two-Way Extension-Based Assay with Cas12a. ACS Sens 2024; 9:3928-3937. [PMID: 39078660 DOI: 10.1021/acssensors.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Protein biomarkers are an important class of biomarkers in disease diagnosis and are traditionally detected by enzyme-linked immunosorbent assay and mass spectrometry, which involve multiple steps and a complex workflow. In recent years, many CRISPR-Cas12a-based methods for protein detection have been developed; however, most of them have not overcome the workflow complications observed in traditional assays, limiting their applicability in point-of-care testing. In this work, we designed a single-step, one-pot, and proximity-based isothermal immunoassay integrating CRISPR Cas12a for homogeneous protein target detection with a simplified workflow and high sensitivity. Probes consisting of different binders (small molecule, aptamer, and antibody) conjugated with oligonucleotides undergo two-way extension upon binding to the protein targets, leading to downstream DNA amplification by a pair of nicking enzymes and polymerases to generate target sequences for Cas12a signal generation. We used the streptavidin-biotin model to demonstrate the design of our assay and proved that all three elements of protein detection (target protein binding, DNA amplification, and Cas12a signal generation) could coexist in one pot and proceed isothermally in a single buffer system at a low reaction volume of 10 μL. The plug-and-play applicability of our assay has been successfully demonstrated using four different protein targets, streptavidin, PDGF-BB, antidigoxigenin antibody, and IFNγ, with the limit of detection ranging from fM to pM.
Collapse
Affiliation(s)
- Yahui Gao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
5
|
Tian G, Tan J, Liu B, Xiao M, Xia Q. Field-deployable viral diagnostic tools for dengue virus based on Cas13a and Cas12a. Anal Chim Acta 2024; 1316:342838. [PMID: 38969428 DOI: 10.1016/j.aca.2024.342838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
The diagnosis of dengue virus (DENV) has been challenging particularly in areas far from clinical laboratories. Early diagnosis of pathogens is a prerequisite for the timely treatment and pathogen control. An ideal diagnostic for viral infections should possess high sensitivity, specificity, and flexibility. In this study, we implemented dual amplification involving Cas13a and Cas12a, enabling sensitive and visually aided diagnostics for the dengue virus. Cas13a recognized the target RNA by crRNA and formed the assembly of the Cas13a/crRNA/RNA ternary complex, engaged in collateral cleavage of nearby crRNA of Cas12a. The Cas12a/crRNA/dsDNA activator ternary complex could not be assembled due to the absence of crRNA of Cas12a. Moreover, the probe, with 5' and 3' termini labeled with FAM and biotin, could not be separated. The probes labeled with FAM and biotin, combined the Anti-FAM and the Anti-Biotin Ab-coated gold nanoparticle, and conformed sandwich structure on the T-line. The red line on the paper strip caused by clumping of AuNPs on the T-line indicated the detection of dengue virus. This technique, utilizing an activated Cas13a system cleaving the crRNA of Cas12a, triggered a cascade that amplifies the virus signal, achieving a low detection limit of 190 fM with fluorescence. Moreover, even at 1 pM, the red color on the T-line was easily visible by naked eyes. The developed strategy, incorporating cascade enzymatic amplification, exhibited good sensitivity and may serve as a field-deployable diagnostic tool for dengue virus.
Collapse
Affiliation(s)
- Guozhen Tian
- Hainan Women and Children's Medical Center, Haikou, Hainan, 571199, China
| | - Jun Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Biao Liu
- Hainan Women and Children's Medical Center, Haikou, Hainan, 571199, China
| | - Meifang Xiao
- Hainan Women and Children's Medical Center, Haikou, Hainan, 571199, China.
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
6
|
Chen M, Jiang X, Hu Q, Long J, He J, Wu Y, Wu Z, Niu Y, Jing C, Yang X. Toehold-Containing Three-Way Junction-Initiated Multiple Exponential Amplification and CRISPR/Cas14a Assistant Magnetic Separation Enhanced Visual Detection of Mycobacterium Tuberculosis. ACS Sens 2024; 9:62-72. [PMID: 38126108 DOI: 10.1021/acssensors.3c01622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Rapid and simple nucleic acid detection is significant for disease diagnosis and pathogen screening, especially under specific conditions. However, achieving highly sensitive and specific nucleic acid detection to meet the time and equipment demand remains technologically challenging. In this study, we proposed a magnetic separation enhanced colorimetry biosensor based on a toehold-containing three-way junction (TWJ) induced multiple isothermal exponential amplification and the CRISPR/Cas14a (C-TEC) biosensor. The TWJ template was designed as a Y-X-Y structure. In the presence of the target, the formation of toehold-containing TWJ complex induced primer extension, leading to the generation of amplified single-stranded DNA; this amplified DNA could then bind to either the free TWJ template for EXPAR reaction or the toehold of the TWJ complex for toehold-mediated strand displacement, thereby enabling the recycling of the target. The amplification products could trigger CRISPR/Cas14a for efficient trans-cleavage and release the magnetically bound gold nanoparticle probes for colorimetry detection. Using Mycobacterium tuberculosis 16S rDNA as the target, the proposed C-TEC could detect 16S rDNA down to 50 fM by the naked eye and 20.71 fM by UV-vis detector at 520 nm within 90 min under optimal conditions. We successfully applied this biosensor to clinical isolates of Mycobacterium tuberculosis. In addition, the C-TEC biosensor also showed feasibility for the detection of RNA viruses. In conclusion, the proposed C-TEC is a convenient, fast, and versatile platform for visual detection of pathogen DNA/RNA and has potential clinical applications.
Collapse
Affiliation(s)
- Mengqi Chen
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianfang Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jinyan Long
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Jianwei He
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuchen Wu
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Zhili Wu
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Yanhong Niu
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| | - Chunmei Jing
- Children's Hospital of Chongqing Medical University, Chongqing 400015, China
| | - Xiaolan Yang
- Chongqing Medical University, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing 400016, China
| |
Collapse
|
7
|
Yi M, Gong Y, Zhan Q, Dai Y, Yang T, Cheng X, Ding S, Gu B, Cheng W, Zhang D. A one-pot CRISPR-Cas12a-based toolbox enables determination of terminal deoxynucleotidyl transferase activity for acute leukemia screening. Anal Chim Acta 2023; 1254:341115. [PMID: 37005025 DOI: 10.1016/j.aca.2023.341115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
An isothermal, one-pot toolbox (called OPT-Cas) based on CRISPR-Cas12a collateral cleavage capability is proposed for highly sensitive and selective determination of terminal deoxynucleotidyl transferase (TdT) activity. Oligonucleotide primers with 3'-hydroxyl (OH) terminal were randomly introduced for TdT-induced elongation. In the presence of TdT, dTTP nucleotides polymerized at the 3' terminals of the primers to generate abundant polyT-tails, which function as triggers for the synchronous activation of Cas12a proteins. Finally, the activated Cas12a trans-cleaved FAM and BHQ1 dual-labeled single-stranded DNA (ssDNA-FQ) reporters, producing significantly amplified fluorescence signals. This one-pot assay, that is primer, crRNA, Cas12a protein and ssDNA-FQ reporter are all in one tube, allows simple but high-sensitive quantification of TdT activity with a low detection limit of 6.16 × 10-5 U μL-1 in the concentration scope from 1 × 10-4 U μL-1 to 1 × 10-1 U μL-1, and achieves extraordinary selectivity with other interfering proteins. Furthermore, the OPT-Cas was successfully used to detect TdT in complex matrices and accurate determination of TdT activity in acute lymphoblastic leukemia cells, which might be a reliable technique platform for the diagnosis of TdT-related diseases and biomedical research applications.
Collapse
|
8
|
Kang X, Lei C, Shi J, Liu X, Ren W, Liu C. A versatile CRISPR/Cas12a-based biosensing platform coupled with a target-protected transcription strategy. Biosens Bioelectron 2023; 219:114801. [PMID: 36270083 DOI: 10.1016/j.bios.2022.114801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
Besides the critical role in gene editing, CRISPR/Cas system also brings a new signal amplification mechanism to the development of next generation biosensing technologies. Herein, we have developed a versatile CRISPR/Cas12a sensing platform by combining a target protection-based transcription amplification strategy with the Cas12a-based signal amplification mechanism, which allows for the sensitive detection of both nucleic acid and non-nucleic acid targets. In this design, a rationally designed transcription template sequence is able to avoid Exonuclease I (Exo I) degradation only in the existence of the target-mediated binding events including either nucleic acid hybridization or protein-based affinity interactions. This target binding-induced protection effect can facilitate the subsequent transcription amplification to generate crRNA and activate the subsequent Cas12a trans-cleavage signal amplification mechanism to yield target dosage-responsive fluorescence signal. In contrast, if the target is absent, the protection-free transcription template will be completely digested by Exo I, thus no fluorescence response is produced. This new strategy well eliminates the T7 polymerase-associated non-specific transcription background and realizes the sensitive detection of various kinds of biomolecules including microRNA, protein, as well as exosome, broadening the application scenarios of CRISPR/Cas system in the field of bioanalysis and biosensing.
Collapse
Affiliation(s)
- Xinyue Kang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Chao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Jingjing Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Xiaoling Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China.
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China.
| |
Collapse
|
9
|
Ding S, Wei Y, Chen G, Du F, Cui X, Huang X, Yuan Y, Dong J, Tang Z. Detection of Cancer Marker Flap Endonuclease 1 Using One-Pot Transcription-Powered Clustered Regularly Interspaced Short Palindromic Repeat/Cas12a Signal Expansion. Anal Chem 2022; 94:13549-13555. [PMID: 36121799 DOI: 10.1021/acs.analchem.2c03054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a critical functional protein in DNA replication and genome stability, flap endonuclease 1 (FEN1) has been considered a promising biomarker and druggable target for multiple cancers. We report here a transcription-powered clustered regularly interspaced short palindromic repeat (CRISPR)/Cas12a signal expansion platform for rapid and sensitive detection of FEN1. In this method, the probe cleavage by FEN1 generated a free 5' flap single-stranded DNA which could hybridize with the single-stranded T7 promoter-bearing template and trigger the extension. Then, the CRISPR guide RNA (crRNA) transcribed from the extended template activated the collateral DNase activity of Cas12a, releasing the fluorophore from the quenched DNA signal probe to report the FEN1 detection result. The high specificity for FEN1 was validated by comparing with other repair-relevant proteins. The limit of detection (LOD) could be as low as 0.03 mU, which is sensitive enough to detect the FEN1 activity in biological samples. In addition, the inhibition assay of FEN1 was also successfully achieved with this platform, proving its potential in inhibitor screening. In summary, this study provides a novel biosensor for FEN1 activity analysis and provides new insights into the development of CRISPR-based biosensors for non-nucleic acid targets.
Collapse
Affiliation(s)
- Sheng Ding
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinghua Wei
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| |
Collapse
|
10
|
Shu X, Zhang D, Li X, Zheng Q, Cai X, Ding S, Yan Y. Integrating CRISPR-Cas12a with a crRNA-Mediated Catalytic Network for the Development of a Modular and Sensitive Aptasensor. ACS Synth Biol 2022; 11:2829-2836. [PMID: 35946354 DOI: 10.1021/acssynbio.2c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a, which exhibits excellent target DNA-activated trans-cleavage activity under the guidance of a programmable CRISPR RNA (crRNA), has shown great promise in next-generation biosensing technology. However, current CRISPR-Cas12a-based biosensors usually improve sensitivity by the initial nucleic acid amplification, while the distinct programmability and predictability of the crRNA-guided target binding process has not been fully exploited. Herein, we, for the first time, propose a modular and sensitive CRISPR-Cas12a fluorometric aptasensor by integrating an enzyme-free and robust crRNA-mediated catalytic nucleic acid network, namely, Cas12a-CMCAN, in which crRNA acts as an initiator to actuate cascade toehold-mediated strand displacement reactions (TM-SDRs). As a proof of concept, adenosine triphosphate (ATP) was selected as a model target. Owing to the multiturnover of CRISPR-Cas12a trans-cleavage and the inherent recycling amplification network, this method achieved a limit of detection value of 0.16 μM (20-fold lower than direct Cas12a-based ATP detection) with a linear range from 0.30 to 175 μM. In addition, Cas12a-CMCAN can be successfully employed to detect ATP levels in diluted human serum samples. Considering the simplicity, sensitivity, and easy to tune many targets by changing aptamer sequences, the Cas12a-CMCAN sensing method is expected to offer a heuristic idea for the development of CRISPR-Cas12a-based biosensors and unlock its potential for general and convenient molecule diagnostics.
Collapse
Affiliation(s)
- Xiaojia Shu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Decai Zhang
- Department of Laboratory Diagnosis, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| | - Xingrong Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qingyuan Zheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoying Cai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Liu P, Wang X, Liang J, Dong Q, Zhang J, Liu D, Wang S, Bi J, Liu W, Wang Z, Chen L, Liu L, Huang X, Zhang G. A Recombinase Polymerase Amplification-Coupled Cas12a Mutant-Based Module for Efficient Detection of Streptomycin-Resistant Mutations in Mycobacterium tuberculosis. Front Microbiol 2022; 12:796916. [PMID: 35069497 PMCID: PMC8770913 DOI: 10.3389/fmicb.2021.796916] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a serious public health problem and threat to global TB prevention and control. Streptomycin (STR) is the earliest and classical anti-TB drug, and it is the earliest drug that generated resistance to anti-TB treatment, which limits its use in treating TB and impedes TB control efforts. The rapid, economical, and highly sensitive detection of STR-resistant TB may help reduce disease transmission and morbimortality. CRISPR/CRISPR-associated protein (Cas) is a new-generation pathogen detection method that can detect single-nucleotide polymorphisms with high sensitivity and good specificity. In this study, a Cas12a RR detection system that can recognize more non-traditional protospacer-adjacent motif-targeting sequences was developed based on Cas12a combined with recombinase polymerase amplification technology. This system detects 0.1% of the target substance, and the entire detection process can be completed within 60 min. Its sensitivity and specificity for detecting clinical STR-resistant Mycobacterium tuberculosis were both 100%. Overall, the Cas12 RR detection system provides a novel alternative for the rapid, simple, sensitive, and specific detection of STR-resistant TB, which may contribute to the prompt treatment and prevention of disease transmission in STR-resistant TB.
Collapse
Affiliation(s)
- Peng Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xinjie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Juan Liang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Qian Dong
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Jinping Zhang
- Intensive Care Unit, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongxin Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Shuai Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jing Bi
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Wenqi Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Liang Chen
- Guangdong Center for Tuberculosis Control, Guangzhou, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|