1
|
Gu C, Zhu S, Gu Z. Advances in bismuth utilization for biomedical applications – From a bibliometric perspective. Coord Chem Rev 2024; 517:215988. [DOI: 10.1016/j.ccr.2024.215988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Wang LY, Chen JS, Liu XP, Mao CJ, Jin BK. An amplified photoelectrochemical aptasensor based on Bi2S3/BiFeO3 for ochratoxin A detection. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Wang C, Liu Y, Chen R, Wang X, Wang Y, Wei J, Zhang K, Zhang C. Electrochemical biosensing of circulating microRNA-21 in cerebrospinal fluid of medulloblastoma patients through target-induced redox signal amplification. Mikrochim Acta 2022; 189:105. [DOI: 10.1007/s00604-022-05210-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022]
|
5
|
Yuan H, Sun J, Zhang Q, Chu M, Cheng G, Li X, Xue Q. Spatially-extended 3D magnetic DNA nanodevice-based split-type photoelectrochemical strategy for sensitive and reliable miRNA detection in cancer cells. Analyst 2022; 147:3415-3419. [DOI: 10.1039/d2an00712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To improve the accuracy of PEC sensing. We developed a split-type “turn-off” PEC biosensor based on spatially-extended 3D magnetic DNA nanodevices with high-order DNA amplifiers for sensitive and reliable detection of miRNAs in cancer cells.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Jiuming Sun
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Qi Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Mingyue Chu
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, Shandong, China
| |
Collapse
|