1
|
Morlock GE. Chemical safety screening of products - better proactive. J Chromatogr A 2025; 1752:465946. [PMID: 40253797 DOI: 10.1016/j.chroma.2025.465946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
The increasing pressure to ensure product safety in a global market comes up against the current practice of targeting only known hazardous compounds in product safety analysis. However, product safety refers not only to known but also to unknown or hidden hazards that are very important to know and avoid. Shortcomings and limitations of currently used technologies seem to cause an obvious discrepancy between intended and actual consumer protection. Products are not as safe as claimed by stakeholders. An existing but overlooked proactive safety screening with a prioritization strategy is brought into focus as it offers a unique solution. It can handle the complexity of a product with thousands of compounds of unknown identity and unknown toxicity and can figure out the important hazardous compounds, both known and unknown. Using hardly any sample preparation and the effect detection at an early position in the workflow is a game changer not to overlook hazardous compounds. All analytical technologies are needed, but the key is the re-arrangement of the instrument order, i.e. firstly hazard-related screening (effect first) and secondly, focus on identification of prioritized hazardous compounds. Such a proactive safety screening revealed previously unknown hazardous compounds in products on the market claimed to be safe. The highly sustainable, affordable, and all-in-one 2LabsToGo-Eco with easy-to-use planar bioassays empowers stakeholders to implement proactive safety screening and dynamic risk management. The transition to greater efficacy in consumer protection needs incentives and the critical review aims to stimulate a debate.
Collapse
Affiliation(s)
- Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Baetz N, Cunha JR, Itzel F, Schmidt TC, Tuerk J. Effect-directed analysis of endocrine and neurotoxic effects in stormwater depending discharges. WATER RESEARCH 2024; 265:122169. [PMID: 39128332 DOI: 10.1016/j.watres.2024.122169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/06/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The investigation of pollutant inputs via stormwater runoff and subsequent effects in receiving waters is becoming increasingly urgent in view of climate change with accompanying extreme weather situations such as heavy rainfall events. In this study, two sampling areas, one urban and one rural but dominated by a highway, were investigated using effect-directed analysis to identify endocrine and neurotoxic effects and potentially responsible substances in stormwater structures and receiving waters. For this purpose, a transgenic yeast cell assay for the simultaneous detection of estrogenic, androgenic, and progestogenic effects (YMEES) was performed directly on high-performance thin-layer chromatography (HPTLC) plates. Concomitantly, estrogens were analyzed by GC-MS/MS and other micropollutants typical for wastewater and stormwater by LC-MS/MS. Discharges from the combined sewer overflow (CSO) contribute a large portion of the endocrine load to the studied water body, even surpassing the load from a nearby wastewater treatment plant (WWTP). An effect pattern similar to the CSO sample was shown in the receiving water after the CSO with lower intensities, consisting of an estrogenic, androgenic, and progestogenic effect. In contrast, after the WWTP, only one estrogenic effect with a lower intensity was detected. Concentrations of E1, 17α-E2, 17β-E2, EE2, and E3 in the CSO sample were 2000, 410, 1100, 560, and 2700 pg/L, respectively. HPTLC-YMEES and GC-MS/MS complement each other very well and help to elucidate endocrine stresses. An Acetylcholinesterase (AChE) inhibitory effect could not be assigned to a causative compound by suspect and non-target analysis using LC-HRMS. However, the workflow showed how information from HPTLC separation, effect-based methods, and other meta-information on the sampling area and substance properties can contribute to an identification of effect-responsible substances. Overall, the study demonstrated that effect-based methods in combination with HPTLC and instrumental analysis can be implemented to investigate pollution by stormwater run-off particularly regarding heavy rain events due to climate change.
Collapse
Affiliation(s)
- Nicolai Baetz
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jorge Ricardo Cunha
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany
| | - Fabian Itzel
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Linksniederrheinische Entwässerungs-Genossenschaft (LINEG), Körperschaft des öffentlichen Rechts, Friedrich-Heinrich-Allee 64, 47475 Kamp-Lintfort, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58 - 60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| |
Collapse
|
3
|
Bergmann AJ, Masset T, Breider F, Dudefoi W, Schirmer K, Ferrari BJD, Vermeirssen ELM. Estrogenic, Genotoxic, and Antibacterial Effects of Chemicals from Cryogenically Milled Tire Tread. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1962-1972. [PMID: 39031710 DOI: 10.1002/etc.5934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024]
Abstract
Tire and road wear particles (TRWP) contain complex mixtures of chemicals and release them to the environment, and potential toxic effects of these chemicals still need to be characterized. We used a standardized surrogate for TRWP, cryogenically milled tire tread (CMTT), to isolate and evaluate effects of tire-associated chemicals. We examined organic chemical mixtures extracted and leached from CMTT for the toxicity endpoints genotoxicity, estrogenicity, and inhibition of bacterial luminescence. The bioassays were performed after chromatographic separation on high-performance thin-layer chromatography (HPTLC) plates. Extracts of CMTT were active in all three HPTLC bioassays with two estrogenic zones, two genotoxic zones, and two zones inhibiting bacterial luminescence. Extracts of CMTT artificially aged with thermooxidation were equally bioactive in each HPTLC bioassay. Two types of aqueous leachates of unaged CMTT, simulating either digestion by fish or contact with sediment and water, contained estrogenic chemicals and inhibitors of bacterial luminescence with similar profiles to those of CMTT extracts. Of 11 tested tire-associated chemicals, two were estrogenic, three were genotoxic, and several inhibited bacterial luminescence. 1,3-Diphenylguanidine, transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, and benzothiazoles were especially implicated through comparison to HPTLC retention factors in the CMTT samples. Other bioactive bands in CMTT samples did not correspond to any target chemicals. Tire particles clearly contain and can leach complex mixtures of toxic chemicals to the environment. Although some known chemicals contribute to estrogenic, genotoxic, and antibacterial hazards, unidentified toxic chemicals are still present and deserve further investigation. Overall, our study expands the understanding of potential adverse effects from tire particles and helps improve the link between those effects and the responsible chemicals. Environ Toxicol Chem 2024;43:1962-1972. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Alan J Bergmann
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
| | - T Masset
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - F Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - W Dudefoi
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
| | - K Schirmer
- Department Environmental Toxicology, Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETHZ, Zürich, Switzerland
- Laboratory of Environmental Toxicology, Ecole Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - B J D Ferrari
- Swiss Centre for Applied Ecotoxicology, Dübendorf, Switzerland
- Swiss Centre for Applied Ecotoxicology, Lausanne, Switzerland
| | | |
Collapse
|
4
|
Mügge FLB, Sim CM, Honermeier B, Morlock GE. Bioactivity Profiling and Quantification of Gastrodin in Gastrodia elata Cultivated in the Field versus Facility via Hyphenated High-Performance Thin-Layer Chromatography. Int J Mol Sci 2023; 24:9936. [PMID: 37373083 DOI: 10.3390/ijms24129936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrodia elata (Orchidaceae) is native to mountainous areas of Asia and is a plant species used in traditional medicine for more than two thousand years. The species was reported to have many biological activities, such as neuroprotective, antioxidant, and anti-inflammatory activity. After many years of extensive exploitation from the wild, the plant was added to lists of endangered species. Since its desired cultivation is considered difficult, innovative cultivation methods that can reduce the costs of using new soil in each cycle and at the same time avoid contamination with pathogens and chemicals are urgently needed on large scale. In this work, five G. elata samples cultivated in a facility utilizing electron beam-treated soil were compared to two samples grown in the field concerning their chemical composition and bioactivity. Using hyphenated high-performance thin-layer chromatography (HPTLC) and multi-imaging (UV/Vis/FLD, also after derivatization), the chemical marker compound gastrodin was quantified in the seven G. elata rhizome/tuber samples, which showed differences in their contents between facility and field samples and between samples collected during different seasons. Parishin E was also found to be present. Combining HPTLC with on-surface (bio)assays, the antioxidant activity and inhibition of acetylcholinesterase as well as the absence of cytotoxicity against human cells were demonstrated and compared between samples.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Department of Food Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cheul Muu Sim
- Neutron Science Center, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Bernd Honermeier
- Department of Agronomy and Crop Physiology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Gertrud E Morlock
- Department of Food Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
5
|
Mügge FLB, Morlock GE. Chemical and cytotoxicity profiles of 11 pink pepper (Schinus spp.) samples via non-targeted hyphenated high-performance thin-layer chromatography. Metabolomics 2023; 19:48. [PMID: 37130976 PMCID: PMC10154279 DOI: 10.1007/s11306-023-02008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Pink pepper is a worldwide used spice that corresponds to the berries of two species, Schinus terebinthifolia Raddi or S. molle L. (Anacardiaceae). Toxic and allergic reactions by ingestion or contact with these plants were reported, and classical in vitro studies have highlighted the cytotoxic properties of apolar extracts from the fruits. OBJECTIVES Perform a non-targeted screening of 11 pink pepper samples for the detection and identification of individual cytotoxic substances. METHODS After reversed-phase high-performance thin-layer chromatography (RP-HPTLC) separation of the extracts and multi-imaging (UV/Vis/FLD), cytotoxic compounds were detected by bioluminescence reduction from luciferase reporter cells (HEK 293 T-CMV-ELuc) applied directly on the adsorbent surface, followed by elution of detected cytotoxic substance into atmospheric-pressure chemical ionization high-resolution mass spectrometry (APCI-HRMS). RESULTS Separations for mid-polar and non-polar fruit extracts demonstrated the selectivity of the method to different substance classes. One cytotoxic substance zone was tentatively assigned as moronic acid, a pentacyclic triterpenoid acid. CONCLUSION The developed non-targeted hyphenated RP-HPTLC-UV/Vis/FLD-bioluminescent cytotoxicity bioassay-FIA-APCI-HRMS method was successfully demonstrated for cytotoxicity screening (bioprofiling) and respective cytotoxin assignment.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, IFZ, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
6
|
Wilson ID, Poole CF. Planar chromatography - Current practice and future prospects. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1214:123553. [PMID: 36495686 DOI: 10.1016/j.jchromb.2022.123553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Planar chromatography, in the form of thin-layer or high-performance thin-layer chromatography (TLC, HPTLC), continues to provide a robust and widely used separation technique. It is unrivaled as a simple and rapid qualitative method for mixture analysis, or for finding bioactive components in mixtures. The format of TLC/HPTLC also provides a unique method for preserving the separation, enabling further investigation of components of interest (including quantification/structure determination) separated in both time and space from the original analysis. The current practice of planar chromatography and areas of development of the technology are reviewed and promising future directions in the use of TLC/HPTLC are outlined.
Collapse
Affiliation(s)
- Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Burlington Danes Building, Du Cane Road, London W12 0NN, UK.
| | - Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
7
|
Kim HK, Choi YH, Verpoorte R. Natural Products Drug Discovery: On Silica or In-Silico? Handb Exp Pharmacol 2023; 277:117-141. [PMID: 36318326 DOI: 10.1007/164_2022_611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Natural products have been the most important source for drug development throughout the human history. Over time, the formulation of drugs has evolved from crude drugs to refined chemicals. In modern drug discovery, conventional natural products lead-finding usually uses a top-down approach, namely bio-guided fractionation. In this approach, the crude extracts are separated by chromatography and resulting fractions are tested for activity. Subsequently, active fractions are further refined until a single active compound is obtained. However, this is a painstakingly slow and expensive process. Among the alternatives that have been developed to improve this situation, metabolomics has proved to yield interesting results having been applied successfully to drug discovery in the last two decades. The metabolomics-based approach in lead-finding comprises two steps: (1) in-depth chemical profiling of target samples, e.g. plant extracts, and bioactivity assessment, (2) correlation of the chemical and biological data by chemometrics. In the first step of this approach, the target samples are chemically profiled in an untargeted manner to detect as many compounds as possible. So far, NMR spectroscopy, LC-MS, GC-MS, and MS/MS spectrometry are the most common profiling tools. The profile data are correlated with the biological activity with the help of various chemometric methods such as multivariate data analysis. This in-silico analysis has a high potential to replace or complement conventional on-silica bioassay-guided fractionation as it will greatly reduce the number of bioassays, and thus time and costs. Moreover, it may reveal synergistic mechanisms, when present, something for which the classical top-down approach is clearly not suited. This chapter aims to give an overview of successful approaches based on the application of chemical profiling with chemometrics in natural products drug discovery.
Collapse
Affiliation(s)
- Hye Kyong Kim
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.,College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
Mügge FL, Morlock GE. Planar bioluminescent cytotoxicity assay via genetically modified adherent human reporter cell lines, applied to authenticity screening of Saussurea costus root. J Chromatogr A 2022; 1683:463522. [DOI: 10.1016/j.chroma.2022.463522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/02/2023]
|
9
|
Planar chromatography-bioassays for the parallel and sensitive detection of androgenicity, anti-androgenicity and cytotoxicity. J Chromatogr A 2022; 1684:463582. [DOI: 10.1016/j.chroma.2022.463582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022]
|
10
|
Sing L, Schwack W, Göttsche R, Morlock GE. 2LabsToGo─Recipe for Building Your Own Chromatography Equipment Including Biological Assay and Effect Detection. Anal Chem 2022; 94:14554-14564. [PMID: 36225170 PMCID: PMC9610689 DOI: 10.1021/acs.analchem.2c02339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
A complete recipe for building your own chromatography equipment from readily available materials is introduced. It combines sample separation (chemistry laboratory) with biological effect detection (biology laboratory). This hyphenation of two disciplines is necessary for prioritizing important compounds in complex samples. Among the thousands of compounds therein, it is often not clear which compounds are the important ones. On the same separation surface, additional detection of biological effects enables and guides substance prioritization. The newly developed open-source 2LabsToGo system for chemical and biological analysis is completely solvent-resistant and, due to miniaturization, environmentally friendly regarding the consumption of materials. It produces comparable results but is 10 times more compact (26 cm × 31 cm × 34 cm), 10 times lighter (6.8 kg), and 55 times less expensive (€ 1717) than current sophisticated commercial devices. As a proof of concept of the first 2LabsToGo system, the quality of different water samples was analyzed since clean water is becoming increasingly rare. In water, most of the thousands of substance signals or features can neither be identified nor classified toxicologically. However, methods that exploit this hyphenated strategy provide answers to such essential safety issues. Drinking or tap water did not show bioactive or toxic compounds, which was expected, whereas biogas or landfill water samples did. The hyphenated 2LabsToGo strategy is affordable and extremely useful for all laboratories with limited equipment but pressing challenges. It is ready to be used in various analytical tasks and applications.
Collapse
Affiliation(s)
- Lucas Sing
- Institute of Nutritional
Science, Chair of Food Science, and Interdisciplinary Research Center
(iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Wolfgang Schwack
- Institute of Nutritional
Science, Chair of Food Science, and Interdisciplinary Research Center
(iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Rieke Göttsche
- Institute of Nutritional
Science, Chair of Food Science, and Interdisciplinary Research Center
(iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud Elisabeth Morlock
- Institute of Nutritional
Science, Chair of Food Science, and Interdisciplinary Research Center
(iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
11
|
Calabretta MM, Lopreside A, Montali L, Zangheri M, Evangelisti L, D'Elia M, Michelini E. Portable light detectors for bioluminescence biosensing applications: A comprehensive review from the analytical chemist's perspective. Anal Chim Acta 2022; 1200:339583. [DOI: 10.1016/j.aca.2022.339583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
|