1
|
Li B, Wang J, Wang X, Jiang B, Niu Q. A new oligothiophene-derivatized fluorescent sensor for detecting and imaging of Hg 2+ in water/soil/urine/tea/seafood samples and living plants. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125585. [PMID: 39721489 DOI: 10.1016/j.saa.2024.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Considering the high toxicity of Hg2+ to living organisms, accurately and sensitively detecting Hg2+ in environments, biology and food systems is of the utmost importance. Herein, we present a new fast-responsive oligothiophene-derivatized fluorescent sensor TTB for Hg2+ detection in real water/soil/urine/food samples. Sensor TTB shows a quick response, ultrahigh specificity, strong anti-disturbance, high-sensitivity with a satisfactory detection limit of 0.23 µM and good reversibility towards Hg2+. The response mechanism was well examined through Job's plot, FTIR spectra and DFT calculations. To examine naked-eye recognition of Hg2+, a visualization method by the TTB-coated test paper and cotton swabs was used for quickly detecting Hg2+. Additionally, sensor TTB shows good application flexibility and proves the capability for quantitative and accurate monitoring of Hg2+ levels in various water, soil, human urine, tea and seafood samples with an excellent efficiency. Moreover, fluorescence imaging experiments demonstrated that the TTB showed good cell-permeability and was utilized to detect/image Hg2+ in living plants. This study provides a powerful tool for accurately and reliably detecting Hg2+ in bio/environmental and food systems.
Collapse
Affiliation(s)
- Baokun Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Junjie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xingjian Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Biaobiao Jiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
2
|
Kumarasamy K, Devendhiran T, Chien WJ, Lin MC, Ramasamy SK, Yang JJ. Bodipy-based quinoline derivative as a highly Hg 2+-selective fluorescent chemosensor and its potential applications. Methods 2024; 223:35-44. [PMID: 38228195 DOI: 10.1016/j.ymeth.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
A highly efficient sensor has been successfully developed using quinoline-based BODIPY compounds (8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazaindacene (C1) and 7-hydroxy-8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazindacene (C2) to detect Hg2+ ions. The sensor C1 exhibits remarkable selectivity in detecting Hg2+ with a limit of detection 3.06 × 10-8 mol/L. The developed chemical sensors have shown stability, cost-effectiveness, ease of preparation, and remarkable selectivity towards Hg2+ ions compared to other commonly occurring metal ions. The total recovery of the sensor C1 can be achieved by using a 0.1 mol/L solution of KI. The proposed sensor C1 has been applied to determine Hg2+ in tap and distilled water, yielding excellent results. In addition, the binding mode of C1-Hg2+ and C2-Hg2+ complexes was a 1:1 ratio confirmed by mass spectra, Job's plot, and DFT study. Moreover, the sensor C1 successfully applied for the biological studies results in negligible cytotoxicity, which demonstrates it can be used to determine Hg2+ in HT22 cells.
Collapse
Affiliation(s)
- Keerthika Kumarasamy
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Tamiloli Devendhiran
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan, ROC
| | - Wei-Jyun Chien
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| | - Mei-Ching Lin
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC.
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala 133207, Haryana, India
| | - Ji-Jhang Yang
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan, ROC
| |
Collapse
|
3
|
Tan T, Zhang C, Han Y, Chu R, Xi W, Chen X, Sun J, Huang H, Hu Y, Huang X. Fine-tuning bromide AIE probes for Hg 2+ detection in mitochondria with wash-free staining. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132999. [PMID: 37988945 DOI: 10.1016/j.jhazmat.2023.132999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
Mercury ions (Hg2+) primarily target mitochondria in the cells. Therefore, the development of novel probes that specifically target mitochondria in the presence of Hg2+ is of immense importance. Most previously reported probes that utilize the softness of S, Te, O, and/or N atoms for Hg2+ binding often face problems such as fluorescence quenching and off-target signals. In this study, bromide-hydrocarbon pyridinium salts were designed to target the mitochondria and chelate Hg2+ via Hg-Br coordination bonds. As a prototype, four aggregation-induced emission (AIE) fluorogens, namely TPP-Br, TPP-Cl, R1, and R2, with a similar D-π-A structure but slight differences in their halogen substituents, were designed. Among them, only TPP-Br achieved the highly selective and sensitive detection of Hg2+ by triggering its AIE properties, resulting in remarkable emission enhancement (80-fold), colorimetry, and the Tyndall effect. TPP-Br exhibited high selectivity and sensitivity to Hg2+ with a detection limit of 0.35 μM, rapid response time (<10 s), and large Stokes shift of 185 nm. Their interaction modes were studied using a combination of 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy, fluorescent lifetime decay, and theoretical calculations. TPP-Br exhibited a low emission background in cells, whereas in the presence of Hg2+, mitochondria were lit up with wash-free staining. This study provides a powerful tool for accurately diagnosing mercury poisoning-related diseases in mitochondria.
Collapse
Affiliation(s)
- Tian Tan
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Chuang Zhang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Ying Han
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Ruijun Chu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Wenyu Xi
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xulang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yanjun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
4
|
Kakalejčíková S, Bazel Y, Fizer M. Extraction-less green spectrofluorimetric method for determination of mercury using an Astra Phloxine fluorophore: Comprehensive experimental and theoretical studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123946. [PMID: 38295591 DOI: 10.1016/j.saa.2024.123946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
A new sensitive and selective extraction-less method for the spectrofluorimetric determination of Hg2+ has been developed using the polymethine dye Astra Phloxine (AP) with requirements for green analytical chemistry. The principle of this method for analytical use is the formation of an ion associate (IA) in the presence of mercury ions and AP, which causes a change in the electronic structure of the dye cation and its subsequent fluorescence quenching. The IA created during the process was sufficiently stable in aqueous solutions and did not require the use of surfactants or organic solvents, which are typically used for similar analytical systems. The system indicated high selectivity towards Hg2+ in the presence of at least 100-fold higher concentrations of Co2+, Fe2+, Mg2+, Ni2+, Zn2+, Ca2+, Ba2+, K+, Na+. The calibration curve was linear in the range from 0.003 to 0.1 mg L-1. Precision and accuracy were expressed as intra-day and inter-day analysis with RSD values of 2.9 - 4.8 % and recovery of 97.1 - 110.0 %. The proposed method was used for the determination of Hg2+ on the model and real water samples. Theoretical calculations were used to predict the IA structure and to explain the experimentally observed fluorescence spectra. A few theoretical methods were tested for predicting IA emission energies, and the CIS(D) method was found to be the most accurate.
Collapse
Affiliation(s)
- Sofia Kakalejčíková
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic.
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Maksym Fizer
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States; Department of Organic Chemistry, Educational Scientific Institute of Chemistry and Ecology, Uzhhorod National University, Fedinets', Str. 53/1, Uzhhorod 88000, Ukraine.
| |
Collapse
|
5
|
Chen X, He Z, Huang X, Sun Z, Cao H, Wu L, Zhang S, Hammock BD, Liu X. Illuminating the path: aggregation-induced emission for food contaminants detection. Crit Rev Food Sci Nutr 2023; 65:856-883. [PMID: 37983139 DOI: 10.1080/10408398.2023.2282677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Food safety is a global concern that deeply affects human health. To ensure the profitability of the food industry and consumer safety, there is an urgent need to develop rapid, sensitive, accurate, and cost-effective detection methods for food contaminants. Recently, the Aggregation-Induced Emission (AIE) has been successfully used to detect food contaminants. AIEgens, fluorescent dyes that cause AIE, have several valuable properties including high quantum yields, photostability, and large Stokes shifts. This review provides a detailed introduction to the principles and advantages of AIE-triggered detection, followed by a focus on the past five years' applications of AIE in detecting various food contaminants including pesticides, veterinary drugs, mycotoxins, food additives, ions, pathogens, and biogenic amines. Each detection principle and component is comprehensively covered and explained. Moreover, the similarities and differences among different types of food contaminants are summarized, aiming to inspire future researchers. Finally, this review concludes with a discussion of the prospects for incorporating AIEgens more effectively into the detection of food contaminants.
Collapse
Affiliation(s)
- Xincheng Chen
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Zhenyun He
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhichang Sun
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Hongmei Cao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California, USA
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| |
Collapse
|
6
|
Kou YL, Tong J, Meng C, Yuan Q, Wang J, Yu SY. Reversible and Turn-On Fluorescence Detection of Phosphate in Aqueous Solution and Living Cell Imaging by Supramolecular Metallacycles with AIE-Active Ligands. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40828-40838. [PMID: 37597236 DOI: 10.1021/acsami.3c07838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Luminescent supramolecular metallacycles have attracted great interest as a new promising class of sensing substrates. In this work, two tetraphenylethene (TPE)-based diimidazole and dipyrazole ligands with the aggregation-induced emission (AIE) feature were designed for the construction of supramolecular tetragonal metallacycles 1-4 with two 90° mononuclear [(bpy)M]2+ or dinuclear [(bpy)2M2]4+ acceptors (bpy = 2,2'-dipyridine; M = Pd, Pt), in which the fluorescence can be quenched to an "off" state due to the ligand-to-metal charge transfer (LMCT). Metallacycle 1 was utilized as a fluorescence sensor for phosphate (PO43-) detection in aqueous solution by means of disassembly, leading to the release of the ligand. Additionally, the metallacycle can be regenerated through self-assembly via the introduction of Pd(II) acceptors. PO43- was detected using TPE-based metallacycles over a wide concentration range, with a detection limit as low as 2.1 × 10-8 M. Furthermore, sensor 1 also presented the semiquantitative visual detection ability for PO43- in the test paper mode via fluorescence changes. The aforementioned studies not only enhance the current research on fluorescent materials but also offer a strategy for the creation of stimuli-responsive supramolecular coordination complexes.
Collapse
Affiliation(s)
- Ya-Lan Kou
- Laboratory for Self-Assembly Chemistry, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jin Tong
- Laboratory for Self-Assembly Chemistry, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Laboratory for Self-Assembly Chemistry, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Laboratory for Self-Assembly Chemistry, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ji Wang
- Laboratory for Self-Assembly Chemistry, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Shu-Yan Yu
- Laboratory for Self-Assembly Chemistry, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Kumar A. Recent Development in Fluorescent Probes for the Detection of Hg 2+ Ions. Crit Rev Anal Chem 2023; 54:3269-3312. [PMID: 37517076 DOI: 10.1080/10408347.2023.2238066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Mercury, a highly toxic heavy metal, poses significant environmental and health risks, necessitating the development of effective and responsive techniques for its detection. Organic chromophores, particularly small molecules, have emerged as promising materials for sensing Hg2+ ions due to their high selectivity, sensitivity, and ease of synthesis. In this review article, we provide a systematic overview of recent advancements in the field of fluorescent chemosensors for Hg2+ ions detection, including rhodamine derivatives, Schiff bases, coumarin derivatives, naphthalene derivatives, BODIPY, BOPHY, naphthalimide, pyrene, dicyanoisophorone, bromophenol, benzothiazole flavonol, carbonitrile, pyrazole, quinoline, resorufin, hemicyanine, monothiosquaraine, cyanine, pyrimidine, peptide, and quantum/carbon dots probes. We discuss their detection capabilities, sensing mechanisms, limits of detection, as well as the strategies and approaches employed in their design. By focusing on recent studies conducted between 2022 and 2023, this review article offers valuable insights into the performance and advancements in the field of fluorescent chemosensors for Hg2+ ions detection.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, D.B.S. (PG) College Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Nagaraj K, Nityananda Shetty A, Trivedi DR. Colorimetric chemosensors for the selective detection of arsenite over arsenate anions in aqueous medium: Application in environmental water samples and DFT studies. Anal Chim Acta 2023; 1265:341355. [PMID: 37230583 DOI: 10.1016/j.aca.2023.341355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Novel organic receptors N3R1- N3R3 were developed for the selective colorimetric recognition of arsenite ions in the organo-aqueous media. In the 50% aq. acetonitrile media and 70% aq. DMSO media, receptors N3R2 and N3R3 showed specific sensitivity and selectivity towards arsenite anions over arsenate anions. Receptor N3R1 showed discriminating recognition of arsenite in the 40% aq. DMSO medium. All three receptors formed a 1:1 complex with arsenite and stable for a pH range of 6-12. The receptors N3R2 and N3R3 achieved a detection limit of 0.008 ppm (8 ppb) and 0.0246 ppm, respectively, for arsenite. Initial hydrogen bonding on binding with the arsenite followed by the deprotonation mechanism was well supported by the UV-Vis titration, 1H- NMR titration, electrochemical studies, and the DFT studies. Colorimetric test strips were fabricated using N3R1- N3R3 for the on-site detection of arsenite anion. The receptors are also employed for sensing arsenite ions in various environmental water samples with high accuracy.
Collapse
Affiliation(s)
- K Nagaraj
- Material Science Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India; Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India
| | - A Nityananda Shetty
- Material Science Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India
| | - Darshak R Trivedi
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, 575 025, Karnataka, India.
| |
Collapse
|
9
|
Mohanty P, Dash PP, Naik S, Behura R, Mishra M, Sahoo H, Sahoo SK, Barick AK, Jali BR. A thiourea-based fluorescent turn-on chemosensor for detecting Hg2+, Ag+ and Au3+ in aqueous medium. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Su MF, Tong J, Wang XY, Yu SY. Ancillary ligand-assisted self-assembly of a pyrenylpyridine with Zn(II), Cu(II), Ni(II), and Co(II): Syntheses, structural characterization, and photoluminescence properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Enbanathan S, Manickam S, Dhanthala Thiyagarajan M, Jothi D, Manojkumar S, Munusamy S, Murugan D, Rangasamy L, Balijapalli U, Kulathu Iyer S. Rational design of diphenyl-λ5σ4-phosphinine based fluorescent probe for the selective detection of Hg2+ ions: Real application in cell imaging and paper strips. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|