1
|
Menero-Valdés P, Álvarez L, González-Iglesias H, Fernández B, Pereiro R. Unveiling compositional images of specific proteins in individual cells by LA-ICP-MS: Labelling with ruthenium red and metal nanoclusters. Anal Chim Acta 2024; 1317:342906. [PMID: 39030007 DOI: 10.1016/j.aca.2024.342906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Recent biological studies have demonstrated that changes can occur in the cellular genome and proteome due to variations in cell volume. Therefore, it is imperative to take cell volume into account when analyzing a target protein. This consideration becomes especially critical in experimental models involving cells subjected to different treatments. Failure to consider cell volume could obscure the studied biological phenomena or lead to erroneous conclusions. However, quantitative imaging of proteins within cells by LA-ICP-MS is limited by the lack of methods that provide the protein concentration (protein mass over cell volume) rather than just protein mass within individual cells. RESULTS The combination of a metal tagged immunoprobe with ruthenium red (RR) labelling enables the simultaneous analysis of a specific protein and the cell volume in each cell analyzed by LA-ICP-(Q)MS. The results indicate that the CYP1B1 concentration exhibits a quasi-normally distribution in control ARPE-19 cells, whereas AAPH-treated cells reveal the presence of two distinct cell groups, responding and non-responding cells to an in vitro induced oxidative stress. The labelling of the membrane with RR and the measurement of Ru mass in each cell by LA-ICP-MS offers higher precision compared to manually delimitation of the cell perimeter and eliminates the risk of biased information, which can be prone to inter-observer variability. The proposed procedure is fast and minimizes errors in cell area assignment and offers the possibility to carry out a faster data treatment approach if just relative volumes are compared, which can be advantageous for specific applications. SIGNIFICANCE AND NOVELTY This work presents an innovative strategy to directly study the distribution and concentration of proteins within individual cells by LA-ICP-MS. This method employs ruthenium red as a cell volume marker and Au nanoclusters (AuNCs) tagged immunoprobes to label the protein of interest. Furthermore, the proposed labelling strategy enables rapid data processing, allowing for the calculation of relative concentrations and thus facilitating the comparison across large datasets. As a proof-of-concept, the concentration of the CYP1B1 protein was quantified in ARPE-19 cells under both control and oxidative stress conditions.
Collapse
Affiliation(s)
- Paula Menero-Valdés
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica (FIO), Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
2
|
Billimoria K, Andresen E, Resch-Genger U, Goenaga-Infante H. A Strategy for Quantitative Imaging of Lanthanide Tags in A549 Cells Using the Ratio of Internal Standard Elements. Anal Chem 2024. [PMID: 39028702 DOI: 10.1021/acs.analchem.4c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
One remaining handicap for spatially resolved elemental quantification in biological samples is the lack of a suitable internal standard (IS) that can be reliably measured across both calibration standards and samples. In this work, multielement quantitative intracellular imaging of cells tagged with lanthanide nanoparticles containing key lanthanides, e.g., Eu and Ho, is described using a novel strategy that uses the ratio of IS elements and LA-ICP-TOFMS analysis. To achieve this, an internal standard layer is deposited onto microscope slides containing either gelatin calibration standards or Eu- and Ho-tagged cell samples. This IS layer contains both gallium (Ga) and indium (In). Monitoring either element as an IS individually showed significant variability in intensity signal between sample or standards prepared across multiple microscope slides, which is indicative of the difficulties in producing a homogeneous film at intracellular resolution. However, normalization of the lanthanide signal to the ratio of the IS elements improved the calibration correlation coefficients from 0.9885 to 0.9971 and 0.9805 to 0.9980 for Eu and Ho, respectively, while providing a consistent signal to monitor the ablation behavior between standards and samples. By analyzing an independent quality control (QC) gelatin sample spiked with Eu and Ho, it was observed that without normalization to the IS ratio the concentrations of Eu and Ho were highly biased by approximately 20% in comparison to the expected values. Similarly, this overestimation was also observed in the lanthanide concentration distribution of the cell samples in comparison with the normalized data.
Collapse
Affiliation(s)
- Kharmen Billimoria
- National Measurement Laboratory, LGC, Teddington, TW11 0LY, United Kingdom
| | - Elina Andresen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | | |
Collapse
|
3
|
Cui W, Ji H, Cai Z, Li Q, Yu D, Luo H, Zhang J, Wang Z. A green and facile direct ink writing technique for preparation calibration standards in laser ablation inductively coupled plasma mass spectrometry analysis. Anal Chim Acta 2024; 1309:342670. [PMID: 38772663 DOI: 10.1016/j.aca.2024.342670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a powerful tool for microanalysis of solid materials. Nevertheless, one limitation of the method is the lack of well-characterized homogeneous reference materials (RMs), such as BaF2 crystal and BaCO3 ceramics samples, making direct quantification difficult. This work presents a novel Direct Ink Writing (DIW) method to produce RMs for microanalysis. The Mg, Cr, Fe, Co, Ni, Cu, Y, Mo, Pr, Gd, Dy, Ho, Er, Tm, Yb, and Lu solutions were gravimetrically doped into BaCO3 by mixing with the dispersant and then cured with DIW techniques. (94) RESULTS: BaCO3 powder was combined with a dopant analyte to produce a printable slurry, aided by the use of a dispersant and cellulose. The resulting mixture was then printed using DIW equipment. The retention rates of the doped elements were investigated by internal and external standard method, and the results showed that they were completely dispersed in the solid material. After further optimization, it was found that there was no significant heterogeneity among the printed samples. LA-ICP-MS was used to analyze printed samples, to evaluate micro-scale homogeneity. The mass concentration of the doped element was determined by ICP-MS, verify its move closer to nominal value. Compared with the traditional reference materials preparation methods, the DIW technology greatly increased the sample homogeneity and the accuracy of the desired concentration. (132) SIGNIFICANCE: As far as we know, there are few reports on the application of DIW method to prepare calibration standards. In brief, it is proved that the proposed method of preparing calibration standard by DIW technique to quantify analytes is valid and robust. This procedure provides great potential for LA-ICP-MS in-situ analysis in the field of well-prepared products, such as ceramic and crystal samples.(63).
Collapse
Affiliation(s)
- Wenxin Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China; School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Haohao Ji
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhaoqing Cai
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haiyan Luo
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jian Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Zheng Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhang T, Huang C, Jiao Y, Shao L, Jiang D, Li F, Li W, Gao X. ICP-MS and fluorescence dual-mode detection of ZIKV-RNA based on quantum dot labeling with hybridization chain reaction. Talanta 2024; 269:125463. [PMID: 38016323 DOI: 10.1016/j.talanta.2023.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The detection of Zika virus (ZIKV) is of great significance to human life and health. Herein, we presented an ICP-MS and fluorescent dual-mode sensor for quantitative analysis of Zika virus RNA fragments (ZIKV-RNA), which employed quantum dots (QDs) as signal tags and combined with hybridization chain reaction (HCR). The dual-mode sensor realized cross-checking of the analysis results and improved the assay accuracy. Firstly, the single-stranded DNA (ssDNA) was anchored on the surface of magnetic beads (MBs). Afterward, HCR was conducted with probe DNA-CdSe quantum dots conjugates (pDNA-QDs) and link DNA (lDNA), producing the MBs-ssDNA-[pDNA-QDs-lDNA]n conjugates. In the presence of target ZIKV-RNA, a strand displacement reaction occurred, leading to the dissociation of the [pDNA-QDs-lDNA]n labels from the conjugates into the solution. Finally, the signal intensity was detected using ICP-MS and fluorescence analysis, with achieved limits of detection of 131 pM and 152 pM, respectively. The inter-assay RSD values of fluorescence and ICP-MS were 3.94 % and 4.26 % at 10 nM level, respectively, showing that the method had good precision. This method showed high selectivity and was applied to the analysis of biological fluids. There was no significant difference between the results of ICP-MS modes and fluorescence mode. This method offers a new strategy for sensitivity analysis of ZIKV-RNA and exhibits promise in clinical applications for diagnosis.
Collapse
Affiliation(s)
- Tianran Zhang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China; Yantai Center for Disease Control and Prevention, Yantai, 264000, People's Republic of China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China.
| | - Fenghua Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Wei Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
5
|
Menero-Valdés P, Lores-Padín A, Fernández B, Quarles CD, García M, González-Iglesias H, Pereiro R. Determination and localization of specific proteins in individual ARPE-19 cells by single cell and laser ablation ICP-MS using iridium nanoclusters as label. Talanta 2023; 253:123974. [PMID: 36195026 DOI: 10.1016/j.talanta.2022.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022]
Abstract
Single cell-inductively coupled plasma-mass spectrometry (sc-ICP-MS) and laser ablation (LA)-ICP-MS have been complementary employed to develop a comprehensive study of APOE and claudin-1 expression in ARPE-19 cells submitted to a glucose treatment (100 mM, 48 h) that induces oxidative stress conditions. Results were compared with control cells. The determination of the two proteins by ICP-MS was sequentially carried out using specific immunoprobes labelled with IrNCs that offer a huge amplification (1760 ± 90 atoms of Ir on average). A novel sample introduction system, the microFAST Single Cell set-up, was employed for sc-ICP-MS analysis. This introduction system resulted in a cellular transport efficiency of 85 ± 9% for ARPE-19 cells (91 ± 5% using a PtNPs standard). After the proper immunocytochemistry protocol with the specific IrNCs immunoprobes in cell suspensions (sc-ICP-MS), the mass of APOE and claudin-1 in individual ARPE-19 cells was obtained. Average detection limits per cell by sc-ICP-MS were 0.02 fg of APOE and 3 ag of claudin-1. The results of sample analyses obtained by sc-ICP-MS were validated with commercial ELISA kits. The distribution of both target proteins in individual cells (fixated in the chamber wall) was unveiled by LA-ICP-MS. The high amplification provided by the IrNCs immunoprobes allowed the identification of APOE and claudin-1 within individual ARPE-19 cells. High resolution images were obtained using a laser spot of 2 × 2 μm.
Collapse
Affiliation(s)
- Paula Menero-Valdés
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain
| | - Ana Lores-Padín
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain.
| | - C Derrick Quarles
- Elemental Scientific, Inc., 7277 World Communications Drive, Omaha, NE, 68122, USA
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, Oviedo, 33012, Spain; Department of Cellular Morphology and Biology, Faculty of Medicine, Julian Clavería, Oviedo, 33006, Spain
| | - Héctor González-Iglesias
- Department of Technology and Biotechnology of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, Oviedo, 33006, Spain.
| |
Collapse
|