1
|
Qin ZN, Chen JM, Li JW, Zhen ZP, Chen QZ, Zhang ZQ, Wang GH, Gao YF. Rapid absolute quantification of glucose and fructose isomers in honey using a boronic acid-based reactive matrix by MALDI-TOF/TOF tandem mass spectrometry. Food Chem 2025; 477:143623. [PMID: 40023024 DOI: 10.1016/j.foodchem.2025.143623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
The slight structural differences between carbohydrate isomers pose considerable difficulties for their identification and quantification. Herein, a rapid method for the absolute quantification of glucose and fructose isomers using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS). A novel reagent, 4-trimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5-triazine-2-(3-aminophenylboronic acid) (TMNTA), was synthesized and employed as a reactive matrix. This matrix significantly enhances the ionization efficiency of monosaccharides while avoiding matrix interferences. Glucose-13C6 was utilized as an internal standard for the quantitative analysis of both monosaccharides, exhibiting a strong linear correlation (R2 ≥ 0.990). By integrating the concentration relationships of glucose and fructose derived from two diagnostic ions produced from the TMNTA-derivatized monosaccharides, this approach facilitates the absolute quantification of glucose and fructose. The method was successfully applied to the absolute quantification of these monosaccharides in honey. The proposed approach offers a simple, rapid, and high-throughput analysis of glucose and fructose isomers in complex samples.
Collapse
Affiliation(s)
- Zhang-Na Qin
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China
| | - Jia-Min Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China
| | - Jia-Wei Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China
| | - Zhen-Peng Zhen
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China
| | - Qi-Zhao Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China
| | - Zhi-Qiang Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China
| | - Gui-Hua Wang
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China
| | - Yu-Feng Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, PR China; Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou 510316, PR China.
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
van Ede JM, Soic D, Pabst M. Decoding Sugars: Mass Spectrometric Advances in the Analysis of the Sugar Alphabet. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39972673 DOI: 10.1002/mas.21927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Monosaccharides play a central role in metabolic networks and in the biosynthesis of glycomolecules, which perform essential functions across all domains of life. Thus, identifying and quantifying these building blocks is crucial in both research and industry. Routine methods have been established to facilitate the analysis of common monosaccharides. However, despite the presence of common metabolites, most organisms utilize distinct sets of monosaccharides and derivatives. These molecules therefore display a large diversity, potentially numbering in the hundreds or thousands, with many still unknown. This complexity presents significant challenges in the study of glycomolecules, particularly in microbes, including pathogens and those with the potential to serve as novel model organisms. This review discusses mass spectrometric techniques for the isomer-sensitive analysis of monosaccharides, their derivatives, and activated forms. Although mass spectrometry allows for untargeted analysis and sensitive detection in complex matrices, the presence of stereoisomers and extensive modifications necessitates the integration of advanced chromatographic, electrophoretic, ion mobility, or ion spectroscopic methods. Furthermore, stable-isotope incorporation studies are critical in elucidating biosynthetic routes in novel organisms.
Collapse
Affiliation(s)
- Jitske M van Ede
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Dinko Soic
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
4
|
Wang H, Hong L, Yang F, Zhao Y, Jing Q, Wang W, Zhang M, Yang Y, Chen Q, Hu Y, Zou Y, Li X, Yang W. Desorption Electrospray Ionization-Mass Spectrometry Imaging-Based Spatial Metabolomics for Visualizing and Comparing Ginsenosides and Lipids among Multiple Parts and Positions of the Panax ginseng Root. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27549-27560. [PMID: 39620636 DOI: 10.1021/acs.jafc.4c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Ginsenosides and lipids are both bioactive ingredients for ginseng. Targeting these two categories of components, this study was designed to develop desorption electrospray ionization-mass spectrometry imaging approaches and spatial metabolomics strategies, achieving the visualization and differentiation among different parts of Panax ginseng root (e.g., rhizome, main root, lateral root, fibrous root, and adventitious root). Potential chemical markers were identified by searching an in-house ginsenoside library and online Lipid Maps database, together with high-resolution MS2 data analysis. Six ginsenosides and 11 lipids were diagnostic to differentiate five different parts of the P. ginseng root. Additionally, three ginsenosides and 20 lipids were identified as differential markers among the six positions of the main root of P. ginseng. High-abundance malonyl- and oleanolic acid-ginsenosides were observed in the rhizome. These results assist in understanding the accumulation of bioactive molecules all through the root of P. ginseng, which can benefit its quality control and rational use.
Collapse
Affiliation(s)
- Hongda Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Lili Hong
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Feifei Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yuying Zhao
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Qi Jing
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wei Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Min Zhang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yang Yang
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Qinhua Chen
- Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Ying Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yadan Zou
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wenzhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| |
Collapse
|
5
|
Yin Z, Huang W, Li K, Fernie AR, Yan S. Advances in mass spectrometry imaging for plant metabolomics-Expanding the analytical toolbox. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2168-2180. [PMID: 38990529 DOI: 10.1111/tpj.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Institute of Advanced Science Facilities, Shenzhen, 518107, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Kun Li
- Guangdong Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| |
Collapse
|
6
|
Li Y, Wang H, Chen Y, Ding L, Ju H. In Situ Glycan Analysis and Editing in Living Systems. JACS AU 2024; 4:384-401. [PMID: 38425935 PMCID: PMC10900212 DOI: 10.1021/jacsau.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Besides proteins and nucleic acids, carbohydrates are also ubiquitous building blocks of living systems. Approximately 70% of mammalian proteins are glycosylated. Glycans not only provide structural support for living systems but also act as crucial regulators of cellular functions. As a result, they are considered essential pieces of the life science puzzle. However, research on glycans has lagged far behind that on proteins and nucleic acids. The main reason is that glycans are not direct products of gene coding, and their synthesis is nontemplated. In addition, the diversity of monosaccharide species and their linkage patterns contribute to the complexity of the glycan structures, which is the molecular basis for their diverse functions. Research in glycobiology is extremely challenging, especially for the in situ elucidation of glycan structures and functions. There is an urgent need to develop highly specific glycan labeling tools and imaging methods and devise glycan editing strategies. This Perspective focuses on the challenges of in situ analysis of glycans in living systems at three spatial levels (i.e., cell, tissue, and in vivo) and highlights recent advances and directions in glycan labeling, imaging, and editing tools. We believe that examining the current development landscape and the existing bottlenecks can drive the evolution of in situ glycan analysis and intervention strategies and provide glycan-based insights for clinical diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yiran Li
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Haiqi Wang
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Yunlong Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Lin Ding
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| |
Collapse
|
7
|
Wang L, Han Y, Zhang Y, Geng H, Zhu Z, Chen P, Cui X, Wang X, Sun C. In-depth profiling of carbohydrate isomers in biological tissues by chemical derivatization-assisted mass spectrometry imaging. Anal Chim Acta 2023; 1278:341741. [PMID: 37709472 DOI: 10.1016/j.aca.2023.341741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Carbohydrates play crucial regulatory roles in various physiological and pathological processes. However, the low ionization efficiency and the presence of linkage pattern, monosaccharide composition and anomeric configuration isomers make their in-depth analysis very challenging, especially for heterogeneous biological tissues. In this study, we propose a high-sensitive and isomer-specific imaging approach to visualize the spatial distributions of monosaccharide and disaccharide isomers by integrating chemical derivatization and matrix-assisted laser desorption/ionization tandem mass spectrometry imaging (MALDI-MS2I). 2-Pyridinecarbohydrazide (PYD) is developed as a novel derivatization reagent which can not only improves the MS sensitivity of carbohydrates, but also enables the identification and visualization of ketose and aldose monosaccharide isomers, as well as linkage pattern, monosaccharide composition and anomeric configuration disaccharide isomers by mass spectrometry imaging of isomer-specific MS/MS fragment ions. Moreover, we build quantitative MALDI-MS2 and MALDI-MS2I methods for disaccharide isomers based on the diagnostic fragment ions, and good linear relationships could be achieved both in solution and on glass slides. We expect that this study should provide new ideas for in-depth profiling of the spatial signatures of carbohydrates in biological tissues and lay the foundation for a deeper understanding of carbohydrates' structure.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yaqi Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Haoyuan Geng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zihan Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaoqing Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
8
|
Ma B, Zhang Y, Ma J, Chen X, Sun C, Qin C. Spatially resolved visualization of reprogrammed metabolism in hepatocellular carcinoma by mass spectrometry imaging. Cancer Cell Int 2023; 23:177. [PMID: 37620880 PMCID: PMC10464423 DOI: 10.1186/s12935-023-03027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Metabolic reprogramming refers to tumor-associated metabolic alterations during tumorigenesis and has been regarded as one of the most important features of cancer. Profiling the altered metabolites and lipids in hepatocellular carcinoma with spatial signature will not only enhance our understanding of tumor metabolic reprogramming, but also offer potential metabolic liabilities that might be exploited for hepatocellular carcinoma therapy. METHODS We perform matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) analysis on both hepatocellular carcinoma xenograft mouse model and hepatocellular carcinoma patients. Discriminatory metabolites that altered during the development of hepatocellular carcinoma are screened and imaged in xenograft mouse model and are further validated in 21 hepatocellular carcinoma patients. RESULTS We discover stepwise metabolic alterations and progressively increasing metabolic heterogeneity during the growth of hepatocellular carcinoma. Arginine and its metabolites spermine and spermidine, choline and phosphatidylcholine metabolism, and fatty acids were found to be significantly reprogrammed in hepatocellular carcinoma tissues. CONCLUSIONS The spatially resolved profiling of the metabolites and lipids in highly heterogeneous hepatocellular carcinoma tissue will contribute to obtaining precise metabolic information for the understanding of tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Bangzhen Ma
- Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jiwei Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinguo Chen
- Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Chenglong Sun
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Chengkun Qin
- Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
| |
Collapse
|
9
|
Borisjuk L, Horn P, Chapman K, Jakob PM, Gündel A, Rolletschek H. Seeing plants as never before. THE NEW PHYTOLOGIST 2023; 238:1775-1794. [PMID: 36895109 DOI: 10.1111/nph.18871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Imaging has long supported our ability to understand the inner life of plants, their development, and response to a dynamic environment. While optical microscopy remains the core tool for imaging, a suite of novel technologies is now beginning to make a significant contribution to visualize plant metabolism. The purpose of this review was to provide the scientific community with an overview of current imaging methods, which rely variously on either nuclear magnetic resonance (NMR), mass spectrometry (MS) or infrared (IR) spectroscopy, and to present some examples of their application in order to illustrate their utility. In addition to providing a description of the basic principles underlying these technologies, the review discusses their various advantages and limitations, reveals the current state of the art, and suggests their potential application to experimental practice. Finally, a view is presented as to how the technologies will likely develop, how these developments may encourage the formulation of novel experimental strategies, and how the enormous potential of these technologies can contribute to progress in plant science.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Patrick Horn
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Kent Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Peter M Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany
| |
Collapse
|
10
|
Guo N, Fang Z, Zang Q, Yang Y, Nan T, Zhao Y, Huang L. Spatially resolved metabolomics combined with bioactivity analyses to evaluate the pharmacological properties of two Radix Puerariae species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116546. [PMID: 37121451 DOI: 10.1016/j.jep.2023.116546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE P. lobata and P. thomsonii are medicinal plants with similar pharmacological functions but different therapeutic effects. A novel method is presented herein to investigate metabolites in terms of their distribution and qualification, quantification is necessary to elucidate the different therapeutic effects of the two Puerariae species. AIM OF THE STUDY The aim of the present study was to perform spatially resolved metabolomics combined with bioactivity analyses to systematically compare the metabolite differences in P. lobata and P. thomsonii by distribution, qualification, quantification, and biological activity to evaluate their pharmacological properties. MATERIALS AND METHODS Air flow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) was performed to characterize the differences in the metabolite distributions of P. lobata and P. thomsonii. Further qualitative and quantitative analyses of the differential metabolites were performed using liquid chromatography-mass spectrometry (LC-MS). Biological activities correlated with the differences in the metabolites were validated by MTT assays. RESULTS Some metabolites showed complementary distributions of the phloem and xylem in the two species, saccharide, vitamin, and inosine levels were higher in the phloem of P. thomsonii but higher in the xylem of P. lobata. The 3'-hydroxyl puerarin level was higher in the xylem of P. thomsonii but higher in the phloem of P. lobata. Qualitative and quantitative analyses of the metabolites revealed a total of 52 key differential metabolites. MTT assays showed that daidzein, daidzin, puerarin, ononin, genistin, formononetin, 3'-hydroxy puerarin, 3'-methoxy puerarin, mirificin, and 3'-methoxy daidzin exerted protective effects on H9c2 cells against hypoxia/reoxygenation injury. P. lobata extracts exhibited a significantly better protective efficacy than P. thomsonii extracts. CONCLUSIONS In this study, AFADESI-MSI combined with LC-MS and biological activities comprehensively elucidated metabolite differences in the distribution, qualification, quantification, and pharmacological properties of P. lobata and P. thomsonii. The results of this study could provide a novel strategy for species identification and quality assessment of similar Chinese herbal medicines.
Collapse
Affiliation(s)
- Na Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yiqing Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Tiegui Nan
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuping Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|