1
|
Du Y, Yang Q, He F. Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework. Anal Chim Acta 2025; 1341:343681. [PMID: 39880498 DOI: 10.1016/j.aca.2025.343681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC. RESULTS Herein, a novel Zn (II) Functionalized magnetic covalent organic framework (Fe3O4@COF@Zn) was created. As the role of a fluorescent probe, it had excellent characteristics of ratiometric (F529/F436), ultrafast response (1 min), and ultra-low detection limit (16 nM). As the role of an adsorbent, it demonstrated a high capacity of adsorption (414.94 mg/g) in the pH-neutral range, fast kinetics (10 min), desirable regeneration capability, and convenient magnetic separation. By theoretical and experimental analysis, the detection and adsorption mechanism for TC was systematically revealed. Moreover, as an attempt, Fe3O4@COF@Zn showed it potential for crop remediation by adsorbing TC-contaminated water. SIGNIFICANCE This work demonstrates the exceptional performance of Zn-functionalized fluorescent COF for ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of TC, thereby illustrating its significant potential for the rapid monitoring and treatment of TC contamination.
Collapse
Affiliation(s)
- Yuanchun Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Qingxin Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
2
|
Liu X, Lu Z, Huang S, Chen N, Xiao X, Zhu X, Zhang R. A practical fluorometric and colorimetric dual-mode sensing platform based on two-dimensional porous organic nanosheets for rapid determination of trifluralin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1188-1195. [PMID: 39820884 DOI: 10.1039/d4ay02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Trifluralin, a widely used dinitroaniline herbicide, poses significant toxic risks, necessitating the development of rapid detection methods for food safety. In this study, we prepared ultrathin two-dimensional triphenylamine porous organic nanosheets (TPA-PONs) through a facile liquid-phase exfoliation process. The TPA-PONs, characterized by their exceptional fluorescence properties and nanoscale thickness (1.65 ± 0.3 nm), demonstrated a remarkable fluorescence quenching response upon exposure to trifluralin. Spectroscopic analysis combined with DFT calculations revealed that the quenching mechanism is driven by electron and energy transfer. TPA-PONs-based fluorescence sensor exhibited a linear response to trifluralin concentrations ranging from 0.01 to 10.0 μmol L-1 with a limit of detection as low as 3.50 nmol L-1. Additionally, the sensor was applied to detect trifluralin residues in vegetables, achieving recoveries of 89.08-102.84%. To facilitate on-site detection, a novel TPA-PONs-based colorimetric film sensor has been developed, enabling visual analysis of trifluralin using a smartphone. This dual-mode sensing platform holds significant potential for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Xue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Zhenyu Lu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Shijun Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Na Chen
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xue Xiao
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Xiaohui Zhu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Runkun Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China
| |
Collapse
|
3
|
Zheng X, Xie Y, Chen Z, Cao M, Lei X, Le T. A comprehensive review on the pretreatment and detection methods of nitrofurans and their metabolites in animal-derived food and environmental samples. Food Chem X 2024; 24:101928. [PMID: 39539437 PMCID: PMC11558636 DOI: 10.1016/j.fochx.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, the residues of nitrofurans (NFs) and their metabolites in animal-derived food and environmental samples have gained widespread attention. The parent drugs and their metabolites have displayed significant toxicity to human health including carcinogenic, mutagenic and teratogenic effects, leading to banned in animal husbandry in many countries. Hence, monitoring the residues of NFs is necessary to guarantee public health and ecological security. This review aims to summarize and assess the structural properties, residue status, sample pretreatment methods (liquid-liquid extraction, solid-phase extraction, Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), and field-assisted extraction), and detection methods (chromatographic analysis, immunoassay, and some innovative detection methods) for NFs and their metabolites in animal-derived food and environmental samples. This paper provides a detailed reference and discussion for the analysis of NFs and their metabolites, which can effectively promote the establishment of innovative detection methods for NFs and their metabolites residues.
Collapse
Affiliation(s)
- Xiaoling Zheng
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yong Xie
- Bioassay 3D Reconstruction Laboratory, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mingdong Cao
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xianlu Lei
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
4
|
Zhang G, Ju P, Lu W, Li A, Zhang Q, Jiang L, Zhang E. Rationally design a novel Zn-MOF for fluorescent detection of nitrofuran antibiotics: The synthesis, structure and sensing applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124836. [PMID: 39032236 DOI: 10.1016/j.saa.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Nitrofuran antibiotics (NFAs) residues in waterare a persistent concern for the public due to the potential threats they pose to human health and the environment. Therefore, efficient probes that are capable of detecting trace amounts of antibiotics in real water environments have become a top priority. Herein, a novel fluorescent Zn-MOF probe (MOF-1) was revealed for the highly selective and sensitive sensing of NFAs. MOF-1 was rationally constructed with Zn(NO3)2·6H2O, 5,5'-(anthracene-9,10-diyl) diisophthalic acid (H4ADIP) and 1,3-bis(imidazol-1-ylmethyl)-benzene (mbib) by using the solvothermal method. Fluorescence sensing experiments demonstrate that MOF-1 can function as a fluorescent sensor for selective, sensitive, and rapid detection of NFAs among 15 antibiotics including ciprofloxacin (CPFX), chloramphenicol (CAP), sulfonamides and NFAs. Fluorescence titration experiments indicated that MOF-1 exhibited remarkably low detection limits of 0.19 μM, 0.26 μM, and 0.34 μM for furazolidone (FZD), furaltadone (FDH) and nitrofurazone (NFZ), respectively. Meanwhile, MOF-1 was successfully employed for NFAs detection in real samples with the recoveries of 98.7 % - 104.1 %, and a relative standard deviation below 5.1 %. Moreover, the sensing mechanism could be ascribed to the synergistic effect between the internal filtering effect and photoinduced electron transfer according to the experiment results and DFT calculations. Additionally, test strips were prepared based on MOF-1 for point of care testing of NFAs.
Collapse
Affiliation(s)
- Guixue Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Ping Ju
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Wenhui Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Anzhang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Qingxiang Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China.
| |
Collapse
|
5
|
Huang H, Huang H, Yang J, Yang H, Dai J, Li Z, Yao W, Guo X. Synthesis of P, N-dopped carbon nanosheets for highly sensitive fluorescence analysis of nitrofuran antibiotics in fish. Food Chem 2024; 459:140445. [PMID: 39024887 DOI: 10.1016/j.foodchem.2024.140445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The misuse of antibiotics has caused serious impacts on food safety and human health, making it crucial to develop rapidly and highly sensitive methods for detecting trace nitrofuran antibiotics (NFs). In this study, phosphorus, nitride-doped carbon nanosheets (PN/CNs) were synthesized using a simple hydrothermal method based on graphitic carbon nitride. This prepared material showed excellent water solubility and stable optical properties. A new fluorescence sensing platform based on PN/CNs was constructed for the highly sensitive detection of four NFs. This sensitivity was mainly attributed to the fluorescence resonance energy transfer (FRET) mechanism. The limits of detection for nitrofurazone, nitrofurantoin, furazolidone and furaltadone were determined to be 13.41, 15.24, 16.37 and 19.94 nM, respectively. The high sensitivity and selectivity of PN/CNs for these four NFs were thoroughly evaluated by the Stern-Volmer equation and FRET quenching efficiency. This proposed method exhibited high sensitivity and can be successfully applied to detect NFs in fish.
Collapse
Affiliation(s)
- Huiqun Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Hongyuan Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Huan Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Jing Dai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Zhuo Li
- Tobacco Science Institute of Jiangxi Province, Nanchang 330000, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| |
Collapse
|
6
|
Kulczyk S, Kowalczyk A, Cyniak JS, Koszytkowska-Stawińska M, Nowicka AM, Kasprzak A. Click Chemistry Derived Hexa-ferrocenylated 1,3,5-Triphenylbenzene for the Detection of Divalent Transition Metal Cations. ACS OMEGA 2024; 9:38658-38667. [PMID: 39310204 PMCID: PMC11411552 DOI: 10.1021/acsomega.4c04300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The 1,3-dipolar cycloaddition reaction (click chemistry approach) was employed to create a hexa-ferrocenylated 1,3,5-triphenylbenzene derivative. Leveraging the presence of metal-chelating sites associated with 1,2,3-triazole moieties and 1,4-dinitrogen systems (ethylenediamine-like), as well as tridentate chelating sites (1,4,7-trinitrogen, diethylene triamine-like) systems, the application of this molecule as a chemosensor for divalent transition metal cations was investigated. The interactions were probed voltammetrically and spectrofluorimetrically against seven selected cations: iron(II) (Fe2+), cobalt(II) (Co2+), nickel(II) (Ni2+), copper(II) (Cu2+), zinc(II) (Zn2+), cadmium(II) (Cd2+), and manganese(II) (Mn2+). Electrochemical assays revealed good detection properties, with very low limits of detection (LOD), for Co2+, Cu2+, and Cd2+ in aqueous solution (0.03-0.09 μM). Emission spectroscopy experiments demonstrated that the title compound exhibited versatile detection properties in solution, specifically turn-off fluorescence behavior upon the addition of each tested transition metal cation. The systems were characterized by satisfactory Stern-Volmer constant values (105-106 M-1) and low LOD, especially for Zn2+ and Co2+ (at the nanomolar concentration level).
Collapse
Affiliation(s)
- Stanisław Kulczyk
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | - Agata Kowalczyk
- Faculty
of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland
| | - Jakub S. Cyniak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| | | | - Anna M. Nowicka
- Faculty
of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland
| | - Artur Kasprzak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland
| |
Collapse
|
7
|
Du XN, He Y, Chen YW, Liu Q, Sun L, Sun HM, Wu XF, Lu Y. Decoding Cosmetic Complexities: A Comprehensive Guide to Matrix Composition and Pretreatment Technology. Molecules 2024; 29:411. [PMID: 38257324 PMCID: PMC10818968 DOI: 10.3390/molecules29020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Despite advancements in analytical technologies, the complex nature of cosmetic matrices, coupled with the presence of diverse and trace unauthorized additives, hinders the application of these technologies in cosmetics analysis. This not only impedes effective regulation of cosmetics but also leads to the continual infiltration of illegal products into the market, posing serious health risks to consumers. The establishment of cosmetic regulations is often based on extensive scientific experiments, resulting in a certain degree of latency. Therefore, timely advancement in laboratory research is crucial to ensure the timely update and adaptability of regulations. A comprehensive understanding of the composition of cosmetic matrices and their pretreatment technologies is vital for enhancing the efficiency and accuracy of cosmetic detection. Drawing upon the China National Medical Products Administration's 2021 Cosmetic Classification Rules and Classification Catalogue, we streamline the wide array of cosmetics into four principal categories based on the following compositions: emulsified, liquid, powdered, and wax-based cosmetics. In this review, the characteristics, compositional elements, and physicochemical properties inherent to each category, as well as an extensive overview of the evolution of pretreatment methods for different categories, will be explored. Our objective is to provide a clear and comprehensive guide, equipping researchers with profound insights into the core compositions and pretreatment methods of cosmetics, which will in turn advance cosmetic analysis and improve detection and regulatory approaches in the industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xian-Fu Wu
- National Institutes for Food and Drug Control, Beijing 102629, China; (X.-N.D.); (Y.H.); (Y.-W.C.); (Q.L.); (L.S.); (H.-M.S.)
| | - Yong Lu
- National Institutes for Food and Drug Control, Beijing 102629, China; (X.-N.D.); (Y.H.); (Y.-W.C.); (Q.L.); (L.S.); (H.-M.S.)
| |
Collapse
|
8
|
Sun X, Qiao Y, Zhang M, Cheng Y, Ning F, Zhang H, Hu P. AIE-based cyclodextrin metal-organic frame material for fluorescence detection of nitrofuran and tetracycline antibiotics in aqueous solution. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Advances on Hormones in Cosmetics: Illegal Addition Status, Sample Preparation, and Detection Technology. Molecules 2023; 28:molecules28041980. [PMID: 36838967 PMCID: PMC9959700 DOI: 10.3390/molecules28041980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Owing to the rapid development of the cosmetic industry, cosmetic safety has become the focus of consumers' attention. However, in order to achieve the desired effects in the short term, the illegal addition of hormones in cosmetics has emerged frequently, which could induce skin problems and even skin cancer after long-term use. Therefore, it is of great significance to master the illegal addition in cosmetics and effectively detect the hormones that may exist in cosmetics. In this review, we analyze the illegally added hormone types, detection values, and cosmetic types, as well as discuss the hormone risks in cosmetics for human beings, according to the data in unqualified cosmetics in China from 2017 to 2022. Results showed that although the frequency of adding hormones in cosmetics has declined, hormones are still the main prohibited substances in illegal cosmetics, especially facial masks. Because of the complex composition and the low concentration of hormones in cosmetics, it is necessary to combine efficient sample preparation technology with instrumental analysis. In order to give the readers a comprehensive overview of hormone analytical technologies in cosmetics, we summarize the advanced sample preparation techniques and commonly used detection techniques of hormones in cosmetics in the last decade (2012-2022). We found that ultrasound-assisted extraction, solid phase extraction, and microextraction coupled with chromatographic analysis are still the most widely used analytical technologies for hormones in cosmetics. Through the investigation of market status, the summary of sample pretreatment and detection technologies, as well as the discussion of their development trends in the future, our purpose is to provide a reference for the supervision of illegal hormone residues in cosmetics.
Collapse
|