1
|
Wu Q, Zhang H, Fu L, Jia L. One-step cascade method via glucose oxidase-copper ion complex for detecting glucose using a portable device. Anal Biochem 2025; 702:115856. [PMID: 40158833 DOI: 10.1016/j.ab.2025.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
In this study, a one-step cascade fluorescence method was developed for the detection of glucose in honey, based on the glucose oxidase-copper ion complexes (GOx@Cu2+). These complexes exhibit dual enzymatic activities-glucose oxidase and peroxidase-like activities-which enable them to catalyze a cascade reaction. This reaction involves the oxidation of glucose and o-phenylenediamine (OPD), leading to the formation of 2,3-diaminophenazine (oxOPD), a compound with fluorescent properties. The proposed method overcomes the challenges of pH mismatch between enzymes and streamlines the testing process, eliminating the need for nanomaterial preparation and reducing the detection time to just 20 min. The feasibility of the method was validated by analyzing three honey samples, achieving recoveries between 96.4 % and 106 %, with relative standard deviations of less than 1.9 %. The selectivity and accuracy of the method were verified by capillary electrophoresis in three honey samples. Moreover, a self-designed portable device was introduced to enable on-site glucose detection.
Collapse
Affiliation(s)
- Qingxi Wu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Hongxuan Zhang
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China
| | - Li Fu
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Yang M, Jin H, Gui R. Iron/cobalt co-doped boron quantum dots as nanozymes with peroxidase-like activities and the nanozyme-involved cascade catalysis system for ratiometric fluorescence and dual-mode visual detection of glutamate. Mikrochim Acta 2025; 192:337. [PMID: 40329000 DOI: 10.1007/s00604-025-07183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
To further explore the boron-involved nanomaterials toward efficient applications in chemo/bio sensing and detection fields, this work reports facile preparation of the emerging iron/cobalt co-doped boron quantum dots (Fe/Co@BQDs) that were explored as new artificial nanozymes for ratiometric fluorescence (FL) and visual detection of glutamate (Glu). In the presence of glutamate oxidase (GLOD), Glu was oxidized to produce H2O2, and then the H2O2 was catalyzed by Fe/Co@ BQDs nanozymes to produce hydroxyl radical (•OH). Afterwards, the •OH induced FL quenching responses of rhodamine B (RhB) and Fe/Co@BQDs. Therefore, a new nanozyme-assisted cascade catalysis platform was explored, consisting of Fe/Co@BQDs, GLOD, and RhB. The platform was successfully used for ratiometric FL sensing of Glu and liquid/solid dual-channel FL visual semi-quantitative detection of Glu. The platform exhibits a board linear detection range of 1-500 µM, a low limit of detection of 0.3 µM, highly selective ratiometric FL responses on Glu over potential interferents, and high-performance practical detection of Glu in biological samples. Experimental results verify high peroxidase-like activities of Fe/Co@BQDs that enable efficient applications for unique enzymatic reactions and nanozyme-involved cascade catalysis reactions. The platform can facilitate further development of other types of metal-doped nanomaterials with natural biological enzyme-like activities and their promising applications, especially chemo/bio sensing, bioimaging and therapeutics at the levels of living cells and small animals.
Collapse
Affiliation(s)
- Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, People's Republic of China
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, People's Republic of China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, People's Republic of China.
| |
Collapse
|
3
|
Zhao W, Zhang M, Zhang L, Deng X, Wang Y, Chen Y, Weng S. Carbon Dots with Antioxidant Capacity for Detecting Glucose by Fluorescence and Repairing High-Glucose Damaged Glial Cells. J Fluoresc 2025; 35:1151-1162. [PMID: 38300482 DOI: 10.1007/s10895-024-03599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Diabetic mellitus management extends beyond blood glucose monitoring to the essential task of mitigating the overexpression of reactive oxygen species (ROS), particularly vital for cellular repair, especially within the nervous system. Herein, antioxidant carbon dots (Arg-CDs) were designed and prepared using anhydrous citric acid, L-arginine, and ethylenediamine as sources through a hydrothermal method. Arg-CDs exhibited excellent scavenging ability to 2,2-Diphenyl-1-picrylhydrazyl (DPPH∙), and fluorescence response to hydroxyl radicals (∙OH), a characteristic representative of reactive oxygen species (ROS). Assisted by glucose oxidase and Fe2+, Arg-CDs showed a sensitive and selective response to glucose. The quenching mechanism of Arg-CDs by formed ∙OH was based on the static quenching effect (SQE). The analytical performance of this method for glucose detection encompassed a wide linear range (0.3-15 μM), a low practical limit of detection (0.1 μM) and practical applicability for blood glucose monitoring. In an in vitro model employing glial cells (BV2 cells), it was observed that high glucose medium led to notable cellular damage ascribed to the excessive ROS production from hyperglycemia. The diminished and apoptotic glial cells were gradually recovered by adding increased contents of Arg-CDs. This work illustrates a promising area that designs effective carbon dots with antioxidant capacity for the dual applications of detection and cell repairing based on the utilization of antioxidant activity.
Collapse
Affiliation(s)
- Wenlong Zhao
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Menghan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Liang Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
- Department of Pharmacy, Fujian Provincial Geriatric Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, 350003, China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yiping Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
4
|
Jain S, Nehra M, Dilbaghi N, Chaudhary GR, Kumar S. Detection of Hg 2+ Using a Dual-Mode Biosensing Probe Constructed Using Ratiometric Fluorescent Copper Nanoclusters@Zirconia Metal-Organic Framework/ N-Methyl Mesoporphyrin IX and Colorimetry G-Quadruplex/Hemin Peroxidase-Mimicking G-Quadruplex DNAzyme. BME FRONTIERS 2024; 5:0078. [PMID: 39691776 PMCID: PMC11650877 DOI: 10.34133/bmef.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
Mercury (Hg2+) has been recognized as a global pollutant with a toxic, mobile, and persistent nature. It adversely affects the ecosystem and human health. Already developed biosensors for Hg2+ detection majorly suffer from poor sensitivity and specificity. Herein, a colorimetric/fluorimetric dual-mode sensing approach is designed for the quantitative detection of Hg2+. This novel sensing approach utilizes nanofluorophores, i.e., fluorescent copper nanoclusters-doped zirconia metal-organic framework (CuNCs@Zr-MOF) nanoconjugate (blue color) and N-methyl mesoporphyrin IX (NMM) (red color) in combination with peroxidase-mimicking G-quadruplex DNAzyme (PMDNAzyme). In the presence of Hg2+, dabcyl conjugated complementary DNA with T-T mismatches form the stable duplex with the CuNCs@Zr-MOF@G-quadruplex structure through T-Hg2+-T base pairing. It causes the quenching of fluorescence of CuNCs@Zr-MOF (463 nm) due to the Förster resonance energy transfer (FRET) system. Moreover, the G-quadruplex (G4) structure of the aptamer enhances the fluorescence emission of NMM (610 nm). Besides this, the peroxidase-like activity of G4/hemin DNAzyme offers the colorimetric detection of Hg2+. The formation of duplex with PMDNAzyme increases the catalytic activity. This novel biosensing probe quantitatively detected Hg2+ using both fluorimetry and colorimetry approaches with a low detection limit of 0.59 and 36.3 nM, respectively. It was also observed that the presence of interfering metal ions in case of real aqueous samples does not affect the performance of this novel biosensing probe. These findings confirm the considerable potential of the proposed biosensing probe to screen the concentration of Hg2+ in aquatic products.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio-nanotechnology,
College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar-Haryana 125004, India
- Department of Chemistry & Center of Advanced Studies in Chemistry,
Panjab University, Chandigarh 160014, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology,
Panjab University, Chandigarh 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology,
Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India
| | - Ganga Ram Chaudhary
- Department of Chemistry & Center of Advanced Studies in Chemistry,
Panjab University, Chandigarh 160014, India
| | - Sandeep Kumar
- Department of Physics,
Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| |
Collapse
|
5
|
Wang B, Eden A, Chen Y, Kim H, Queenan BN, Bazan GC, Pennathur S. Auto recalibration based on dual-mode sensing for robust optical continuous glucose monitoring. SENSORS AND ACTUATORS B: CHEMICAL 2024; 418:136277. [DOI: 10.1016/j.snb.2024.136277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Tan W, Yao G, Yu H, He Y, Lu M, Zou T, Li X, Yin P, Na P, Yang W, Yang M, Wang H. Ultra-trace Ag doped carbon quantum dots with peroxidase-like activity for the colorimetric detection of glucose. Food Chem 2024; 447:139020. [PMID: 38513477 DOI: 10.1016/j.foodchem.2024.139020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Carbon quantum dots (CQDs) have significant applications in nanozymes. However, previous studies have not elucidated the structure-activity relationship and enzyme mechanism. In this study, we employed a one-step microwave method to synthesize ultra-trace Ag-doped carbon quantum dots (Ag-CQDs). In the presence of hydrogen peroxide (H2O2), we used the oxidative coupling reaction of 3,3',5,5'-tetramethylbenzidine (TMB) to evaluate the intrinsic peroxidase-like activity, kinetics, and mechanism of Ag-CQDs. The trace amount of doped Ag (1.64 %) facilitated electron transfer from the CQDs interior to the surface. The electron transfer triggered the peroxide activity of CQDs, producing hydroxyl radical (·OH), which oxidized the colorless TMB to blue-colored TMB (oxTMB). By coupling with glucose oxidase (GOx), the Ag-CQDs/H2O2/TMB system has been used for colorimetric glucose determination. The system demonstrated a low detection limit (0.17 µM), wide linear range (0.5-5.5 µM), and satisfactory results when fruit juice was analyzed. This study reports a feasible method for the colorimetric detection of glucose by synthesizing ultra-trace Ag-doped carbon quantum dots with peroxidase-mimicking activity.
Collapse
Affiliation(s)
- Wei Tan
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Guixiang Yao
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Hang Yu
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Yanzhi He
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Mingrong Lu
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Tianru Zou
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Xiaopei Li
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Pengyuan Yin
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Pei Na
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Kunming 650500, PR China.
| |
Collapse
|
7
|
Zhao L, Fang Y, Chen X, Meng Y, Wang F, Li C. Carbon dot-based fluorescent probe for early diagnosis of pheochromocytoma through identification of circulating tumor cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123921. [PMID: 38271847 DOI: 10.1016/j.saa.2024.123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Pheochromocytoma (PCC), as a rare neuroendocrine tumor, is often missed or misdiagnosed because of its atypical clinical manifestations. To realize the early accurate diagnosis of PCC, we have selected circulating tumor cells (CTCs) with more complete biological information as biomarkers and developed a simple and novel fluorescence cytosensor. Octreotide-2,2',2'',2'''- (1,4,7,10 -tetraazacyclododecane-1,4,7,10-tetrayl) tetraacetic acid (DOTA) modified magnetic Fe3O4 and signal amplification CDs@SiO2 nanospheres are prepared to capture and detect PCC-CTCs from peripheral blood via binding to the somatostatin receptor SSTR2 overexpressed on the surface of PCC cells. During the detection process, the target cells were separated and enriched by magnetic capture probes (Fe3O4-DOTA), and then signal probes (CDs@SiO2-DOTA) could also specifically bound to target cells to form the sandwich-like structure for fluorescence signal output. The proposed fluorescence cytosensor has revealed good sensitivity and selectivity for quantitative analysis of PCC-CTCs in the concentration of 5-1000 cells mL-1 with a LOD of 2 cells mL-1. More importantly, designed fluorescence cytosensor has shown good reliability and stability in complex serum samples. This strategy provides a new way for detection of PCC-CTCs.
Collapse
Affiliation(s)
- Liping Zhao
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yiwei Fang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Xinhe Chen
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Yang Meng
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing 211198, Jiangsu, PR China.
| |
Collapse
|
8
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
9
|
Jiao Y, Li H, Wang H, Feng Q, Gao Y. Proximity hybridization regulated dual-mode ratiometric biosensor for estriol detection in pregnancy serum. Anal Chim Acta 2023; 1278:341689. [PMID: 37709442 DOI: 10.1016/j.aca.2023.341689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Sensitive and accurate determination of estriol level is vastly significant for the fetal growth and development. Herein, we constructed a dual-mode ratiometric biosensor for estriol assay combining the competitive immunoreaction, proximity hybridization with a two-step resonance energy transfer (RET) strategy. Estriol antibody and goat anti-rabbit antibody labeled DNA probes (Ab1-DNA1-Pt NPs and Ab2-DNA2) both hybridized with silver nanoclusters labeled DNA strands (H1-Ag NCs). Thus, the formed proximity hybridization enabled the occurrence of fluorescence RET (FL-RET, as the primary RET) between Ag NCs (donor) and Pt NPs (acceptor), quenching FL intensity of Ag NCs (FL off). When target estriol existed, the competitive reaction of Ab1-DNA1-Pt NPs with estriol and Ab2-DNA2 avoided the proximity hybridization. Then, the estriol-dependent H1-Ag NCs quenched electrochemiluminescence (ECL) emission of CdS quantum dots (CdS QDs, ECL off), generating ECL-RET (as the second RET). Consequently, according to the reverse changes of FL and ECL responses, this sensor realized the quantification of estriol from 1 to 100 ng/mL. Moreover, satisfactory results were achieved while testing estriol in pregnancy serum specimens, suggesting that the system is promising for potential application in samples analysis.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China
| | - Hongyuan Li
- Department of Radiology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China; Department of Neurology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China
| | - Huan Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yongguang Gao
- Department of Radiology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
10
|
Huang L, Zhang Z. Recent Advances in the DNA-Mediated Multi-Mode Analytical Methods for Biological Samples. BIOSENSORS 2023; 13:693. [PMID: 37504092 PMCID: PMC10377368 DOI: 10.3390/bios13070693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated nanotechnology has become a research hot spot in recent decades and is widely used in the field of biosensing analysis due to its distinctive properties of precise programmability, easy synthesis and high stability. Multi-mode analytical methods can provide sensitive, accurate and complementary analytical information by merging two or more detection techniques with higher analytical throughput and efficiency. Currently, the development of DNA-mediated multi-mode analytical methods by integrating DNA-mediated nanotechnology with multi-mode analytical methods has been proved to be an effective assay for greatly enhancing the selectivity, sensitivity and accuracy, as well as detection throughput, for complex biological analysis. In this paper, the recent progress in the preparation of typical DNA-mediated multi-mode probes is reviewed from the aspect of deoxyribozyme, aptamer, templated-DNA and G-quadruplex-mediated strategies. Then, the advances in DNA-mediated multi-mode analytical methods for biological samples are summarized in detail. Moreover, the corresponding current applications for biomarker analysis, bioimaging analysis and biological monitoring are introduced. Finally, a proper summary is given and future prospective trends are discussed, hopefully providing useful information to the readers in this research field.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|