1
|
Liu M, Yan L, Lin Z, Wu D, Qiu B, Weng S. CHA-based microarray with Cas12a universal readout for multiple microRNA detection. Mikrochim Acta 2025; 192:293. [PMID: 40214787 DOI: 10.1007/s00604-025-07049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/14/2025] [Indexed: 05/11/2025]
Abstract
Hirschsprung's disease (HSCR), a congenital condition characterized by the absence of nerve cells in the intestinal wall, often requires early and accurate diagnosis for optimal patient outcomes. In this study, we developed a novel and ultrasensitive biosensing strategy for the detection of HSCR-related microRNAs (miRNAs) by integrating catalytic hairpin assembly (CHA) with CRISPR-Cas12a technology. A two-stage process consists of array recognition, and a universal readout is designed. In the first stage, target miRNAs are recognized and amplified on a solid-phase microarray, while in the second stage, the accumulated conversion chains which are not related to target sequences, activate Cas12a, leading to the cleavage of reporter DNA and the generation of a fluorescence signal spatially separated from the first stage. The proposed method was validated for the comprehensive detection of HSCR-related miRNAs and demonstrated high sensitivity and specificity. This work represents a significant advancement in miRNA diagnostics and holds potential for broader clinical applications.
Collapse
Affiliation(s)
- Mingkun Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Lei Yan
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Zhixiong Lin
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Dianming Wu
- General Surgery Department, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Children'S Hospital (Fujian Branch of Shanghai Children'S Medical Center), Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Qiu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
2
|
Cui J, Tian A, Wang H, Yu Y, Hao J, Wang L, Shi C, Ma C. Hydrogel loop-mediated isothermal amplification for ultra-fast diagnosis of Helicobacter pylori in stool samples without nucleic acid extraction. Anal Chim Acta 2025; 1333:343384. [PMID: 39615902 DOI: 10.1016/j.aca.2024.343384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND The gastrointestinal diseases caused by Helicobacter pylori (H. pylori) infection made the accurate detection of H. pylori infection more important. Non-invasive methods, such as molecular diagnostic methods, had become a promising method for detection of H. pylori. Stool samples combined with loop-mediated isothermal amplification (LAMP), showed potential practicability for real-time detection. However, complex nucleic acid extraction steps were required to remove the large numbers of amplification inhibitors in stool samples before LAMP reaction. And the limited number of H. pylori made the detection with long reaction time and low sensitivity. The problems mentioned above were urgently to be solved. RESULTS In this study, we proposed a strategy for ultra-rapid sensitive detection of H. pylori in stool samples by hydrogel LAMP (hLAMP) without extraction. The hydrogel was combined with stool samples after simple thermal cracking, and amplification spaces were formed in its nanopore structures by nano-localization. The LAMP reaction was accelerated by nano space-localization. Besides, this method based on hLAMP could specifically and sensitively detect as low as 100 CFU/mL H. pylori within 40 min from sampling to result due to good anti-inhibition effect on complex samples of hydrogel. The whole process involved sample simple disposal for 10 min and LAMP reaction for 30 min. Furthermore, the excellent anti-inhibition mechanism of hydrogel was discussed, and the mechanism of hydrogel accelerating LAMP was explored. SIGNIFICANCE This is the first application of that hydrogel and LAMP systematically combined to detect H. pylori in stool samples. The developed method had been verified in actual clinical applications that the accuracy rate reached 88.9 % compared with routine histopathology. And it also provided a potential idea for the diagnosis and prevention of H. pylori.
Collapse
Affiliation(s)
- Jinling Cui
- College of Chemistry and Molecular Engineering, College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Key Laboratory of Rapid Nucleic Acid Detection, Qingdao Rapid Nucleic Acid Detection Engineering Research Center, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Anning Tian
- College of Chemistry and Molecular Engineering, College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Key Laboratory of Rapid Nucleic Acid Detection, Qingdao Rapid Nucleic Acid Detection Engineering Research Center, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Haoran Wang
- College of Chemistry and Molecular Engineering, College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Key Laboratory of Rapid Nucleic Acid Detection, Qingdao Rapid Nucleic Acid Detection Engineering Research Center, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 226000, PR China
| | - Jingwen Hao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 226000, PR China
| | - Lei Wang
- College of Chemistry and Molecular Engineering, College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Key Laboratory of Rapid Nucleic Acid Detection, Qingdao Rapid Nucleic Acid Detection Engineering Research Center, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, The Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- College of Chemistry and Molecular Engineering, College of Biological Engineering, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Key Laboratory of Rapid Nucleic Acid Detection, Qingdao Rapid Nucleic Acid Detection Engineering Research Center, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Huang H, Li Y, Wu Y, Zhao X, Gao H, Xie X, Wu L, Zhao H, Li L, Zhang J, Chen M, Wu Q. Advances in Helicobacter pylori detection technology: From pathology-based to multi-omic based methods. Trends Analyt Chem 2025; 182:118041. [DOI: 10.1016/j.trac.2024.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Kuang Z, Wu Y, Xie X, Zhao X, Chen H, Wu L, Gao H, Zhao H, Liang T, Zhang J, Li Y, Wu Q. Advances in Helicobacter pylori Antimicrobial Resistance Detection: From Culture-Based to Multi-Omics-Based Technologies. Helicobacter 2025; 30:e70007. [PMID: 39924349 DOI: 10.1111/hel.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 02/11/2025]
Abstract
Helicobacter pylori (H. pylori), a proven carcinogenic microbe, necessitates antimicrobial treatment once infected. However, H. pylori worldwide currently faces serious antibiotic resistance (AMR), requiring infected patients to undergo antibiotic susceptibility testing (AST) to guide therapy. Currently, the recommended ASTs for H. pylori are culture-based methods, which are time-consuming, complicated, and expensive, impeding their widespread application. With in-depth researches on the AMR mechanisms of H. pylori, specific gene mutations and novel proteins have been confirmed as the cause of AMR and can serve as targets of ASTs. Accordingly, molecular biology detection has been developed and tremendously shortened the time and reduced difficulty of AST. However, these assays still struggle to meet the enormous testing demand and need for even faster, simpler, and more accurate methods. In recent years, researchers have developed various new platforms based on biosensors, transcriptomics, proteomics, and single-cell analysis. This review introduces the AMR mechanisms of H. pylori and summarizes the current ASTs from the working principles to application characteristics. Additionally, we draw attention to the potentially applicable techniques for AST of H. pylori from DNA, RNA, protein, and cell perspectives. By systematically recapitulating the past, present, and future of AST for H. pylori, this review provides valuable insights for developing novel assays.
Collapse
Affiliation(s)
- Zupeng Kuang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiyuan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - He Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tingting Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Yin S, Liu Y, Yang X, Lubanga N, Tai P, Xiong M, Fan B, Yang X, Nie Z, Zhang Q, He B. Rapid visual detection of Helicobacter pylori and vacA subtypes by Dual-Target RAA-LFD assay. Clin Chim Acta 2025; 564:119927. [PMID: 39153656 DOI: 10.1016/j.cca.2024.119927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infects over 50% of the global population and is a significant risk factor for gastric cancer. The pathogenicity of H. pylori is primarily attributed to virulence factors such as vacA. Timely and accurate identification, along with genotyping of H. pylori virulence genes, are essential for effective clinical management and controlling its prevalence. METHODS In this study, we developed a dual-target RAA-LFD assay for the rapid, visual detection of H. pylori genes (16s rRNA, ureA, vacA m1/m2), using recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD) methods. Both 16s rRNA and ureA were selected as identification genes to ensure reliable detection accuracy. RESULTS A RAA-LFD assay was developed to achieve dual-target amplification at a stable 37 °C within 20 min, followed by visualization using the lateral flow dipstick (LFD). The whole process, from amplification to results, took less than 30 min. The 95 % limit of detection (LOD) for 16 s rRNA and ureA, vacA m1, vacA m2 were determined as 3.8 × 10-2 ng/μL, 5.8 × 10-2 ng/μL and 1.4 × 10-2 ng/μL, respectively. No cross-reaction was observed in the detection of common pathogens including Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis, showing the assay's high specificity. In the evaluation of the clinical performance of the RAA-LFD assay. A total of 44 gastric juice samples were analyzed, immunofluorescence staining (IFS) and quantitative polymerase chain reaction (qPCR) were used as reference methods. The RAA-LFD results for the 16s rRNA and ureA genes showed complete agreement with qPCR findings, accurately identifying H. pylori infection as confirmed by IFS in 10 out of the 44 patients. Furthermore, the assay successfully genotyped vacA m1/m2 among the positive samples, showing complete agreement with qPCR results and achieving a kappa (κ) value of 1.00. CONCLUSION The dual-target RAA-LFD assay developed in this study provides a rapid and reliable method for detecting and genotyping H. pylori within 30 min, minimizing dependency on sophisticated laboratory equipment and specialized personnel. Clinical validation confirms its efficacy as a promising tool for effectively control of its prevalence and aiding in the precise treatment of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Sijie Yin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China; Department of Laboratory Medicine, Yangzhou HongquanHospital, Yangzhou, China
| | - Yanghe Liu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China; Department of Laboratory Medicine, Nanjing Jiangning Hospital of Chinese Medicine, Nanjing, China
| | - Xinyi Yang
- Nanjing Jinling High School Hexi Campus, Nanjing, China
| | - Nasifu Lubanga
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China
| | - Ping Tai
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China
| | - Boyue Fan
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China
| | - Xincheng Yang
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China.
| | - Qingsong Zhang
- Department of Clinical Laboratory, Xuancheng Central Hospital, Xuancheng, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, China; H. pylori Research Key Laboratory, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Cao S, Ma D, Xie J, Wu Z, Yan H, Ji S, Zhou M, Zhu S. Point-of-care testing diagnosis of African swine fever virus by targeting multiple genes with enzymatic recombinase amplification and CRISPR/Cas12a System. Front Cell Infect Microbiol 2024; 14:1474825. [PMID: 39698318 PMCID: PMC11652593 DOI: 10.3389/fcimb.2024.1474825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
African swine fever virus (ASFV) infection is causing devastating outbreaks globally; pig farming has suffered severe economic losses due to the ASFV. Currently, strict biosecurity control measures can mitigate the incidence of ASF. Rapid, cost-effective, and sensitive detection of ASFV can significantly reduce disease transmission and mortality. CRISPR/Cas-associated proteins can detect polymorphisms with high specificity and sensitivity, making them ideal for detecting pathogens. In this study, based on CRISPR/Cas12a integrated with enzymatic recombinase amplification (ERA) technology, a CRISPR/Cas12a detection system capable of identifying ASFV E183L, K205R, and C962R gene sequences has been developed. The ERA-CRISPR/Cas12a detection system detected ASFV precisely without cross-reactivity with other porcine pathogen templates and with a sensitivity detection limit of 10 copies per reaction; it takes 60 minutes to complete the detection process. In combination with this integrated ERA pre-amplification and Cas12a/crRNA cutting assay, it provides a rapid, straightforward, sensitive, and specific method for ASFV detection in the field.
Collapse
Affiliation(s)
- Shinuo Cao
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji, Jilin, China
| | - Jun Xie
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Zhi Wu
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Haoyu Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, MOA Key Laboratory of Animal Bacteriology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji, Jilin, China
| | - Mo Zhou
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Shanyuan Zhu
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| |
Collapse
|
7
|
Chakraborty S, Rana S, Gulati S, Chaudhary S, Panigrahi MK, Hallur VK, Maiti S, Chakraborty D, Makharia GK. Engineered FnCas9 mediated mutation profiling for clarithromycin resistance in Helicobacter pylori strains isolated from Indian patients with gastrointestinal disorders. Microchem J 2024; 207:112051. [DOI: 10.1016/j.microc.2024.112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Zhong L, Chen H, Cao S, Hu S. Single Nucleotide Recognition and Mutation Site Sequencing Based on a Barcode Assay and Rolling Circle Amplification. BIOSENSORS 2024; 14:521. [PMID: 39589980 PMCID: PMC11592053 DOI: 10.3390/bios14110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Single nucleotide polymorphisms (SNPs) present significant challenges in microbial detection and treatment, further raising the demands on sequencing technologies. In response to these challenges, we have developed a novel barcode-based approach for highly sensitive single nucleotide recognition. This method leverages a dual-head folded complementary template probe in conjunction with DNA ligase to specifically identify the target base. Upon recognition, the system triggers rolling circle amplification (RCA) followed by the self-assembly of CdSe quantum dots onto polystyrene microspheres, enabling a single-particle fluorescence readout. This approach allows for precise base identification at individual loci, which are then analyzed using a bio-barcode array to screen for base changes across multiple sites. This method was applied to sequence a drug-resistant mutation site in Helicobacter pylori (H. pylori), demonstrating excellent accuracy and stability. Offering high precision, high sensitivity, and single nucleotide resolution, this approach shows great promise as a next-generation sequencing method.
Collapse
Affiliation(s)
- Linmin Zhong
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; (L.Z.); (H.C.)
| | - Huiping Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; (L.Z.); (H.C.)
| | - Shuang Cao
- Key Laboratory of Analysis and Detecting Technology, College of Chemistry, Food Safety MOE, Fuzhou University, Fuzhou 350002, China;
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; (L.Z.); (H.C.)
| |
Collapse
|
9
|
Yao S, Liu Y, Ding Y, Shi X, Li H, Zhao C, Wang J. Three-dimensional DNA nanomachine biosensor coupled with CRISPR Cas12a cascade amplification for ultrasensitive detection of carcinoembryonic antigen. J Nanobiotechnology 2024; 22:266. [PMID: 38762451 PMCID: PMC11102226 DOI: 10.1186/s12951-024-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
The detection of carcinoembryonic antigen (CEA) holds significant importance in the early diagnosis of cancer. However, current methods are hindered by limited accessibility and specificity. This study proposes a rapid and convenient Cas12a-based assay for the direct detection of CEA in clinical serum samples, aiming to address these limitations. The protocol involves a rolling machine operation, followed by a 5-min Cas12a-mediated cleavage process. The assay demonstrates the capability to detect human serum with high anti-interference performance and a detection limit as low as 0.2 ng/mL. The entire testing procedure can be accomplished in 75 min without centrifugation steps, and successfully reduced the limit of detection of traditional DNA walking machine by 50 folds. Overall, the testing procedure can be easily implemented in clinical settings.
Collapse
Affiliation(s)
- Shuo Yao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yukun Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xuening Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Hang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China
| | - Chao Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Juan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Bai Y, Xu P, Li S, Wang D, Zhang K, Zheng D, Yue D, Zhang G, He S, Li Y, Zou H, Deng Y. Signal amplification strategy of DNA self-assembled biosensor and typical applications in pathogenic microorganism detection. Talanta 2024; 272:125759. [PMID: 38350248 DOI: 10.1016/j.talanta.2024.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Biosensors have emerged as ideal analytical devices for various bio-applications owing to their low cost, convenience, and portability, which offer great potential for improving global healthcare. DNA self-assembly techniques have been enriched with the development of innovative amplification strategies, such as dispersion-to-localization of catalytic hairpin assembly, and dumbbell hybridization chain reaction, which hold great significance for building biosensors capable of realizing sensitive, rapid and multiplexed detection of pathogenic microorganisms. Here, focusing primarily on the signal amplification strategies based on DNA self-assembly, we concisely summarized the strengths and weaknesses of diverse isothermal nucleic acid amplification techniques. Subsequently, both single-layer and cascade amplification strategies based on traditional catalytic hairpin assembly and hybridization chain reaction were critically explored. Furthermore, a comprehensive overview of the recent advances in DNA self-assembled biosensors for the detection of pathogenic microorganisms is presented to summarize methods for biorecognition and signal amplification. Finally, a brief discussion is provided about the current challenges and future directions of DNA self-assembled biosensors.
Collapse
Affiliation(s)
- Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Pingyao Xu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shi Li
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China
| | - Guiji Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China.
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China.
| |
Collapse
|