1
|
Liao S, Xiang J, Wu S. One-pot Synthesis of High-performance Green-emitting Carbon Dots for Cd 2+ Sensing and Anti-counterfeiting Applications. J Fluoresc 2025; 35:2135-2145. [PMID: 38507127 DOI: 10.1007/s10895-024-03669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
This study presents a facile one-pot solvothermal synthesis of high-performance green fluorescent carbon dots (G-CDs) using o-phenylenediamine and ethylenediamine as precursors. The G-CDs show excellent optical, temporal, and chemical stability. Notably, they exhibit the highest quantum yield of 24.2% in ethanol and a strong green emission peaking at 546 nm under 440-490 nm excitation. In addition, G-CDs have outstanding salt resistance and multi-solvent compatibility. Due to its bright photoluminescence, G-CDs can be used as a secure ink for anti-counterfeiting. More remarkably, Cd2+ ions can efficiently quench the fluorescence of G-CDs with a detection limit of 0.152 µmol/L, enabling accurate quantification of Cd2+ in water systems. The simple synthesis of high-performance G-CDs expands their applicability in sensing and bioimaging.
Collapse
Affiliation(s)
- Shihua Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jiamei Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Shaogui Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
2
|
Nunes RS, Magno Paiva V, de Oliveira SM, da Silva de Almeida CM, de Oliveira MS, de Araujo JR, Archanjo B, Suguihiro NM, D’Elia E. Sugar Cane ( Saccharum officinarum L.) Waste Synthesized Si,N,S-Carbon Quantum Dots as High-Performance Corrosion Inhibitors for Mild Steel in Hydrochloric Acid. ACS OMEGA 2024; 9:50246-50259. [PMID: 39741856 PMCID: PMC11683491 DOI: 10.1021/acsomega.4c05908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
This work reports the obtention of Si,N,S-CQDs from sugar cane bagasse and their inhibitory action on the mild steel corrosion in 1 mol L-1 HCl solution. The CQDs were successfully obtained and characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Dynamic light scattering, Raman, and UV-vis techniques, also showing endogenous self-doping. The anti-corrosive activity of CQDs was investigated by gravimetric tests, potentiodynamic polarization curves, electrochemical impedance measurements, atomic force microscopy, and scanning electron microscopy. The electrochemical results show that the CQDs present a predominant inhibitory action on the cathodic process, presenting inhibition efficiency of 82, 89, 91, and 94% for 15, 25, 50, and 100 ppm, respectively. Gravimetric tests varying temperature demonstrate that the inhibitor functions through physical adsorption and remains effective for up to 72 h, exhibiting corrosion efficiency of 80.2, 93.2, 96.3, and 97.8% at 15, 25, 50, and 100 ppm concentrations, respectively, after 72 h of immersion. Dynamic light scattering and zeta potential measurements indicate that agglomerations of CQDs play a crucial role in inhibiting corrosion. These results show an excellent alternative for using sugar cane bagasse to produce CQDs and its application as a corrosion inhibitor, valuing agricultural waste and simultaneously solving industry problems.
Collapse
Affiliation(s)
- Rayani
da Silva Nunes
- Department
of Inorganic Chemistry, Universidade Federal
do Rio de Janeiro UFRJ, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, Brazil
| | - Victor Magno Paiva
- Department
of Inorganic Chemistry, Universidade Federal
do Rio de Janeiro UFRJ, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, Brazil
| | - Sanair Massafra de Oliveira
- Materials
Metrology Division, Instituto Nacional de Metrologia, Qualidade e Tecnologia INMETRO, Avenida Nossa Sra. das Graças, 50, Xerém, 25250-020 Duque de Caxias, Brazil
| | - Clara Muniz da Silva de Almeida
- Materials
Metrology Division, Instituto Nacional de Metrologia, Qualidade e Tecnologia INMETRO, Avenida Nossa Sra. das Graças, 50, Xerém, 25250-020 Duque de Caxias, Brazil
| | - Mariane Silva de Oliveira
- Materials
Metrology Division, Instituto Nacional de Metrologia, Qualidade e Tecnologia INMETRO, Avenida Nossa Sra. das Graças, 50, Xerém, 25250-020 Duque de Caxias, Brazil
| | - Joyce Rodrigues de Araujo
- Materials
Metrology Division, Instituto Nacional de Metrologia, Qualidade e Tecnologia INMETRO, Avenida Nossa Sra. das Graças, 50, Xerém, 25250-020 Duque de Caxias, Brazil
| | - Bráulio
Soares Archanjo
- Materials
Metrology Division, Instituto Nacional de Metrologia, Qualidade e Tecnologia INMETRO, Avenida Nossa Sra. das Graças, 50, Xerém, 25250-020 Duque de Caxias, Brazil
| | - Natasha Midori Suguihiro
- Department
of Nanotecnology, Universidade Federal do
Rio de Janeiro Campus UFRJ—Duque de Caxias Professor Geraldo
Cidade, Rodovia Washington
Luiz, 19593, 25240-005 Duque de Caxias, Brazil
| | - Eliane D’Elia
- Department
of Inorganic Chemistry, Universidade Federal
do Rio de Janeiro UFRJ, Avenida Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909 Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Saleh M, Gul A, Nasir A, Moses TO, Nural Y, Yabalak E. Comprehensive review of Carbon-based nanostructures: Properties, synthesis, characterization, and cross-disciplinary applications. J IND ENG CHEM 2024. [DOI: 10.1016/j.jiec.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Fang S, Li S, Yin P, Yao G, Yu H, He Y, Li X, Yang M, Tan W. A fluorimetric and colorimetric dual-mode sensor based on N, S co-doped carbon dots functionalized silver nanoparticles for glucose detection. CHEMOSPHERE 2024; 364:143171. [PMID: 39182729 DOI: 10.1016/j.chemosphere.2024.143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
A fluorescent-colorimetric dual-signal platform, N, S co-doped carbon dots functionalized silver nanoparticles (NS-CDs-AgNPs), was designed in situ by reducing AgNO3 in the presence of N, S co-doped carbon dots (NS-CDs) under the assistance of microwave irradiation for glucose determination. With the formation of silver nanoparticles (AgNPs), the intrinsic fluorescence of NS-CDs was quenched, showing the fluorescence state was off. Whereas the fluorescence of NS-CDs can be switched on when a trace amount of H2O2 was added. Based on this novel phenomenon, the peroxidase-like activity of NS-CDs-AgNPs by using 3,3',5,5'-tetramethylbenzidine (TMB) chromogen and H2O2 as substrates was evaluated. The Km values of the prepared probe for H2O2 and TMB were 0.84 mM and 0.01 mM with the Vm of 6.65 × 10-8 M S-1 and 3.01 × 10-8 M S-1, respectively. The results showed that NS-CDs-AgNPs had good peroxidase-like activity and strong affinity to TMB and H2O2. It confirmed that there is a redox interaction between AgNPs and H2O2, and H2O2 can oxidize Ag to produce Ag+, which is the main reason that the fluorescence of NS-CDs-AgNPs can be activated by H2O2. The hydroxyl radical (·OH) was formed in the process of reaction, which can further oxidize TMB for color reaction. Meanwhile, glucose can be oxidized to produce H2O2 in the presence of glucose oxidase (GOx). Based on the phenomenon, a fluorimetric and colorimetric dual-mode sensor for glucose detection was established. Satisfactory results were obtained with the linear range of 0.1-80 μM for fluorimetric mode and 0.5-5 μM for colorimetric mode, respectively. Additionally, the LOD was below 0.32 μM and 0.21 μM, respectively. The method was successfully applied to determine the glucose in human serum with satisfactory recovery and RSD.
Collapse
Affiliation(s)
- Shuju Fang
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shaoqing Li
- College of Applied Technology, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Pengyuan Yin
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guixiang Yao
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hang Yu
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Yanzhi He
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Xiaopei Li
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Min Yang
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Wei Tan
- School of Chemistry and Environment, Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, Yunnan Minzu University, Kunming, 650500, PR China.
| |
Collapse
|
5
|
Wu H, Wang Y, Jiang D, Chen X, Tan J, Xu Z, Lei H, Li X. Simple synthesis of flower-like ZnO@Pt composites for dual-mode colorimetric detecting Hg 2+ with smartphone and UV-vis. Anal Chim Acta 2024; 1311:342732. [PMID: 38816157 DOI: 10.1016/j.aca.2024.342732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Mercury is one of the most toxic heavy metal contaminants that can be harmful to human health through the food chain. Recently, the colorimetric detection of heavy metals based on nanozyme catalytic activity has received extensive interest due to the simplicity, signal visibility and suitability for in situ detection. However, the majority of these nanozymes that can be utilized for detecting mercury with high synthesis temperature and complicated synthesis methods, which limited their practical application. RESULTS In this work, flower-like ZnO@Pt composites were simply synthesized at room temperature, the flower-like structure and the high electron mobility of ZnO endow ZnO@Pt with stronger peroxidase-like activity. Consequently, dual-mode (UV-vis and smartphone) colorimetric sensors were designed to detect Hg2+. In UV-vis mode, the Hg2+ concentration linear range was 10-400 nM, and the limit of detection (LOD) was 0.54 nM. In smartphone mode, the Hg2+ concentration linear range was 50-1250 nM, and the LOD was 29.8 nM. A parallel analysis in 3 real water samples was confirmed by ICP-MS, the results showed good correlations (R2 > 0.98), indicating the practical reliability of these sensors. SIGNIFICANCE The novel flower-like ZnO@Pt composites with high stability, catalytic activity and Hg2+ response were simply synthesized at room temperature, simplifying the synthesis steps and reducing costs. The sensitivity of the developed colorimetric sensor in UV-vis mode was 3-145 times higher than that of the similar methods. The colorimetric sensor in smartphone mode broadened the detection range and improved the portability of Hg2+ detection. Thus, the dual-mode (UV-vis and smartphone) colorimetric sensors providing new detection modes for rapid monitoring of Hg2+ in environmental water.
Collapse
Affiliation(s)
- Han Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Wang
- Guangzhou Institute for Food Inspection, Guangzhou, 511410, China
| | - Duan Jiang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaomin Chen
- Guangzhou Institute for Food Inspection, Guangzhou, 511410, China
| | - Jingping Tan
- Guangzhou Institute for Food Inspection, Guangzhou, 511410, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Zhou Y, Zhang C, Bai S, Su J, Zhou X, Zhao L. Photoelectrochemical quenching-recovery biosensor based on NSCQDs/Fe 2O 3@Bi 2S 3 for the detection of trypsin. Anal Chim Acta 2024; 1297:342361. [PMID: 38438238 DOI: 10.1016/j.aca.2024.342361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The content of trypsin will change when pancreatic diseases occur, therefore developing a high-performance method for trypsin detection is of great significance for guiding patients on medication plans and improving their prognosis. Photoelectrochemical (PEC) analysis techniques have emerged as a solution to apply for bioassays. RESULTS Herein, the Fe2O3@Bi2S3 and Nitrogen and sulfur co-doped carbon quantum dots (NSCQDs) were successfully synthesized by a hydrothermal method. Subsequently, NSCQDs/Fe2O3@Bi2S3 with a photocurrent amplification effect covered on fluorine-doped tin oxide (FTO) electrode as the substrate material and apoferritin (APO) as a bio-recognition element to quench the photocurrent of the substrate material which can be excited with light. Due to the decomposition specifically between APO and trypsin, the photocurrent response increased. The linear range for trypsin detection showed satisfied results from 2 to 1000 ng mL-1 under optimal conditions, with a detection limit of 0.42 ng mL-1 and a recovery rate of 97.41 %-103.02 %, enabling efficient quantitative analysis of trypsin. SIGNIFICANCE In this experiment, a PEC biosensor with simple operation, low detection limit, excellent selectivity and strong stability was successfully prepared, enabling quantitative analysis of trypsin in human serum samples through the quenching-recovery mechanism. It holds great significance for diagnosis and serves as a practical method for the detection of trypsin in the future.
Collapse
Affiliation(s)
- Ying Zhou
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, China
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medical, Xiangyang, Hubei, 441100, China
| | - Shuru Bai
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, China
| | - Jiaxue Su
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, China
| | - Xunyong Zhou
- HC Enzyme Biotech. Co. Ltd, Shenzhen, Guangdong, 518001, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
7
|
Guo X, Yao W, Bai S, Xiao J, Wei Y, Wang L, Yang J. A graphitic C 3N 4 nanocomposite-based fluorescence platform for label-free analysis of trace mercury ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:930-938. [PMID: 38258552 DOI: 10.1039/d3ay01880f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In this study, a nanocomposite consisting of graphitic carbon nitride nanosheets loaded with graphitic carbon nitride quantum dots (CNQDs/CNNNs) was synthesized via a one-step pyrolysis method. This nanocomposite exhibited excellent thermal stability, photobleaching and salt resistance. Then a new fluorescence sensing platform based on CNQDs/CNNNs was constructed, which showed high sensitivity and selectivity towards trace mercury ions (Hg2+). By using X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectra and density functional theory, the fluorescence response mechanism was elucidated where Hg2+ could interact with CNQDs/CNNNs, causing a structural change in the nanocomposite, further affecting its bandgap structure, and finally leading to fluorescence quenching. The linear range for detecting Hg2+ was found to be 0.025-4.0 μmol L-1, with a detection limit of 7.82 nmol L-1. This strategy provided the advantages of a rapid response and a broad detection range, making it suitable for quantitative detection of Hg2+ in environmental water.
Collapse
Affiliation(s)
- Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Junhui Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Yubo Wei
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, College of Modern Biomedical Industry, Kunming Medical University, People's Republic of China.
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| |
Collapse
|
8
|
Cai B, Ren T, Yu X, Lv W, Liang Y. Aptamer-functionalized gold nanoparticles for mercury ion detection in a colorimetric assay based on color change time as signal readout. Mikrochim Acta 2024; 191:74. [PMID: 38170341 DOI: 10.1007/s00604-023-06142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
A universal strategy for a rapid colorimetric method for Hg2+ in an aqueous solution is described. The specific binding of Hg2+ (thymine-Hg2+-thymine) with thiolated DNA-functionalized gold nanoparticles (AuNPs) via Au-S bonds increases the spatial hindrance of the AuNP surface, resulting in a weakened catalytic ability of AuNPs to catalyze the reaction between p-nitrophenol and NaBH4. Therefore, the color change time (CCT) of the solution from yellow to colorless becomes longer. Based on the kinetic curve of absorbance over time measured by a UV spectrometer, the level of Hg2+ in aqueous solutions can be easily quantified. A linear relationship between CCT and Hg2+ concentration was obtained in the 10-600-nM range with a detection limit of 0.20 nM, which is much lower than the limit value (10 nM) defined by the US Environmental Protection Agency for Hg2+ in drinking water. The excellent sensitivity comes from CCT as the signal output of the probe, rather than the absorbance or wavelength change used in traditional colorimetric probes as the signal output.
Collapse
Affiliation(s)
- Bin Cai
- Ministry of Ecology and Environment, South China Institute of Environmental Science, Guangzhou, 510655, China
| | - Tingyan Ren
- Ministry of Ecology and Environment, South China Institute of Environmental Science, Guangzhou, 510655, China
| | - Xiaowei Yu
- Ministry of Ecology and Environment, South China Institute of Environmental Science, Guangzhou, 510655, China
| | - Wendong Lv
- Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| | - Yong Liang
- School of Chemistry, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
9
|
Hussain MM, Li F, Ahmed F, Khan WU, Xiong H. Fluorescence switch based on NIR-emitting carbon dots revealing high selectivity in the rapid response and bioimaging of oxytetracycline. J Mater Chem B 2023; 11:11290-11299. [PMID: 38013459 DOI: 10.1039/d3tb02139d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The abuse of antibiotics has led to serious environmental pollution and the emergence of drug-resistant bacteria surpassing the replacement rate of antibiotics. Herein, near-infrared fluorescent carbon dots (NIR-CDs) were developed to meet the requirements for oxytetracycline (OTC) detection in food and water samples (milk, honey, and lake water) with a detection limit of 0.112 μM. These NIR-CDs, possessing excellent water-solubility, deep tissue penetration ability, and tunable optical properties, exhibit maximum emission at 790 nm (NIR-I window). Unlike traditional CDs, this novel NIR-CDs nanoprobe provides a dual response in the presence of OTC (quenching and bathochromic shifting), without obvious interference from other existing biomolecules and metal ions. Additionally, these NIR-CDs exhibit excellent photostability and multi-resistance under UV irradiation, exceptional pH stability (pH 6-12), reliable long-time exposure, and durability in ionic (NaCl) environments. Moreover, NIR-CDs and NIR-CDs@OTC are nontoxic and were successfully utilized for cell-imaging applications in normal (NIH3T3) and cancer cells (HeLa).
Collapse
Affiliation(s)
| | - Fengli Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Waheed Ullah Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
10
|
Khan WU, Hussain MM, Ahmed F, Xiong H. A review of the growing trend towards heteroatoms-doped carbon dots based on dopamine acting as a hybrid agent and detected analyte. Talanta 2023; 265:124781. [PMID: 37348356 DOI: 10.1016/j.talanta.2023.124781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Dopamine (DA) is a biomolecule that plays a critical part in the functioning of our brains by promoting motivation, maintaining focus, and altering mood. Excessive or low-level concentrations of DA in the human brain led to a dangerous neurological disorder. It is significantly important to trace the precise amount of DA to prevent such risky brain disease. Recently, heteroatoms-doped carbon dots (H-CDs) have attracted great attention for their capacity to detect biomolecules, metal ions, organic solvents, chemical dyes, etc. In this review, we have provided a comprehensive summary of the emerging trends in the heteroatom functional dopamine-doped carbon dots (DA-CDs), which are based on DA used as starting substances or functionalizing agents. Our analysis encompasses a detailed exploration of the synthetic methods, physical and chemical properties of carbon dots derived from dopamine, as well as their diverse range of applications. Additionally, we have also discussed the application of H-CDs in the dopmine detection by using various fluorescent, colorimetric, and electrochemical techniques.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | | | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
11
|
Khan WU, Qin L, Zhou P, Alam A, Ge Z, Wang Y. Zero Thermal Quenching Phenomenon of Green Emitting Carbon Dots with High Biocompatibility and Stable Multicolor Biological Imaging in a Hot Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45616-45625. [PMID: 37729491 DOI: 10.1021/acsami.3c09688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Carbon dots are emerging fluorescent nanomaterials with unique physical and chemical properties and a wide range of applications. Herein, we have designed and successfully synthesized thermally stable green emissive nitrogen-doped carbon dots (NCDs) with a photoluminescent quantum yield of 11.32% through facile solvent-free carbonization. NCDs demonstrated zero thermal quenching upon various temperatures modulating from 20 to 80 °C. The green emissive NCDs perform very stably even after heating them at 80 °C for 1 h. The thermal stability mechanism demonstrates that C═O and C═N functional groups control the particle aggregation and protect the fluorescent hub from photo-oxidation and thermal oxidation. Highly biocompatible CDs exhibit bright, stable, and multicolor emissions in T-ca cells under hot circumstances (25-45 °C). Additionally, NCDs offer long-term stability in the biosystem, as evidenced by the fact that the cell retains its brightness about 70% after prolonging the incubation time to 8 days. Furthermore, the fluorescent NCDs are utilized as in vivo imaging agents in the hot environment as they display bright and thermally stable imaging (27-45 °C) under 488 nm excitation. The results confirmed that the produced thermally stable NCDs could be used in biology and related medical fields that require hot environment imaging.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, and School of Materials and Energy, Lanzhou University, Lanzhou 730000, P.R. China
- Institute for Advanced Study, and School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Abid Alam
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, and School of Materials and Energy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuhua Wang
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, and School of Materials and Energy, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
12
|
Yao G, Sun J, Miao S, Wang Y, Gao F. Ratiometric visualization of lysosomal pH fluctuations during autophagy by two-photon carbonized polymer dots-based probe. Anal Chim Acta 2023; 1271:341448. [PMID: 37328244 DOI: 10.1016/j.aca.2023.341448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/28/2023] [Indexed: 06/18/2023]
Abstract
Monitoring the pH variation in lysosomes is very conducive to studying the autophagy process, and fluorescent ratiometric pH nanoprobes with inherent lysosome targeting ability are highly desirable. Here, a carbonized polymer dots-based pH probe (oAB-CPDs) was developed by self-condensation of o-aminobenzaldehyde and further carbonization at low temperature. The obtained oAB-CPDs display improved performance in pH sensing, including robust photostability, intrinsic lysosome-targeting ability, self-referenced ratiometric response, desirable two-photon-sensitized fluorescence property, and high selectivity. With the suitable pKa value of 5.89, the as-prepared nanoprobe was successfully applied to monitor the variation of lysosomal pH in HeLa cells. Moreover, the occurrence that lysosomal pH decreased during both starvation-induced and rapamycin-induced autophagy was observed by using oAB-CPDs as fluorescence probe. We believe that nanoprobe oAB-CPDs can work as a useful tool for visualizing autophagy in living cells.
Collapse
Affiliation(s)
- Genxiu Yao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| | - Shan Miao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Yue Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| |
Collapse
|
13
|
Abstract
Mercury, a highly toxic heavy metal, poses significant environmental and health risks, necessitating the development of effective and responsive techniques for its detection. Organic chromophores, particularly small molecules, have emerged as promising materials for sensing Hg2+ ions due to their high selectivity, sensitivity, and ease of synthesis. In this review article, we provide a systematic overview of recent advancements in the field of fluorescent chemosensors for Hg2+ ions detection, including rhodamine derivatives, Schiff bases, coumarin derivatives, naphthalene derivatives, BODIPY, BOPHY, naphthalimide, pyrene, dicyanoisophorone, bromophenol, benzothiazole flavonol, carbonitrile, pyrazole, quinoline, resorufin, hemicyanine, monothiosquaraine, cyanine, pyrimidine, peptide, and quantum/carbon dots probes. We discuss their detection capabilities, sensing mechanisms, limits of detection, as well as the strategies and approaches employed in their design. By focusing on recent studies conducted between 2022 and 2023, this review article offers valuable insights into the performance and advancements in the field of fluorescent chemosensors for Hg2+ ions detection.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry, D.B.S. (PG) College Dehradun, Uttarakhand, India
| |
Collapse
|