1
|
Wang H, Wang C, Zhang Y, Wang Z, Zhu Y, Wang Y, Hong X, Zhang H, Fan N, Qiu M. Recent Advances in Xenes Based FET for Biosensing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500752. [PMID: 40364779 DOI: 10.1002/advs.202500752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Indexed: 05/15/2025]
Abstract
In recent years, monoelemental 2D materials (Xenes) such as graphene, graphdiyne, silicene, phosphorene, and tellurene, have gained significant traction in biosensing applications. Owing to their ultra-thin layered structure, exceptionally high specific surface area, unique surface electronic properties, excellent mechanical strength, flexibility, and other distinctive features, Xenes are recognized for their potential as materials with low detection limits, high speed, and exceptional flexibility in biosensing applications. In this review, the unique properties of Xenes, their synthesis, and recent theoretical and experimental advances in applications related to biosensing, including DNA/RNA biosensors, protein biosensors, small molecule biosensors, cell, and ion biosensors are comprehensively summarized. Finally, the challenges and prospects of this emerging field are discussed.
Collapse
Affiliation(s)
- Huide Wang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chen Wang
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yule Zhang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ziqian Wang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yihan Zhu
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040, China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040, China
| | - Han Zhang
- State Key Laboratory of Radio frequency Heterogeneous integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040, China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
Sasanipoor F, Zhang Z. Molybdenum Disulfide Nanocomposites for Cancer Diagnosis and Therapeutics: Biosensors, Bioimaging, and Phototherapy. Adv Healthc Mater 2025; 14:e2500655. [PMID: 40289409 DOI: 10.1002/adhm.202500655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Molybdenum disulfide (MoS₂) nanomaterials have attracted significant interest in cancer diagnosis and therapy due to their unique physicochemical properties. Due to its extensive surface area and adaptable structure, MoS₂ may engage with pharmaceuticals and biomolecules via covalent and non-covalent interactions. This versatility enhances the sensitivity of identifying specific biomarkers, colloidal stability, and tumor-targeting capabilities. In the near-infrared (NIR) spectrum, MoS₂ exhibits strong optical absorption and efficient photothermal conversion, making it suitable for NIR-driven phototherapy and regulated medication release. Functionalized MoS₂ nanocomposites react differently to the tumor microenvironment, which improves treatment effectiveness by increasing drug accumulation at cancer sites and decreasing off-target effects on healthy tissues. Recent developments in MoS₂-based nanocomposites for cancer detection and treatment are reviewed in this study, with particular attention paid to their uses in photothermal therapy, photodynamic therapy, biosensing, and bioimaging. Additionally, it looks at the difficulties and potential applications of MoS₂ nanocomposites in cancer.
Collapse
Affiliation(s)
- Fatemeh Sasanipoor
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhiqing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
3
|
Hamed EM, Li SFY. Transition Metal Dichalcogenides in Biomedical Devices and Biosensors: A New Frontier for Precision Healthcare. ACS Biomater Sci Eng 2025. [PMID: 40110810 DOI: 10.1021/acsbiomaterials.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Transition metal dichalcogenides (TMDs) have emerged as groundbreaking materials in the field of biomedical applications, particularly in the development of biosensors and medical devices. Their unique electronic and optical properties, combined with their tunability and biocompatibility, position TMDs as promising candidates for enhancing early disease detection and enabling personalized medicine. This perspective explores the multifaceted potential of TMDs, highlighting their applications in fluorescence and Raman-based biosensing, wearable and implantable devices, and smart therapeutic systems for targeted treatment. Additionally, we address critical challenges such as regulatory hurdles, long-term stability, and ethical considerations surrounding continuous health monitoring and data privacy. Looking to the future, we envision TMDs playing a vital role in the advancement of precision medicine, facilitating real-time health monitoring and individualized treatments. However, the successful integration of TMDs into clinical practice necessitates interdisciplinary collaboration among materials science, bioengineering, and clinical medicine. By fostering such collaboration, we can fully harness the capabilities of TMDs to revolutionize healthcare, making it more accessible, precise, and personalized for patients worldwide.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
4
|
Zhu J, Hoettges K, Wang Y, Ma H, Song P, Hu Y, Lim EG, Zhang Q. TimePAD─Unveiling Temporal Sequence ELISA Signal by Deep Learning for Rapid Readout and Improved Accuracy in a Microfluidic Paper-Based Analytical Platform. Anal Chem 2025; 97:4515-4523. [PMID: 39960863 DOI: 10.1021/acs.analchem.4c06001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The integration of paper-based microfluidics with deep learning represents a pivotal trend in enhancing diagnostic capabilities. This paper introduces a new approach to improve the performance of a paper-based microfluidic enzyme-linked immunosorbent assay (ELISA) by training the temporal sequence colorimetric data rather than static data conventionally, using deep learning. Traditional deep learning-assisted ELISA analysis methods usually rely on a single snapshot of the reaction at its end, which limits the further improvement of sensitivity and specificity (or accuracy for combined evaluation), as it misses dynamic changes in the reaction over time. In this work, we developed a temporal sequence-enhanced paper analytical device (TimePAD) that captures continuous video data of the ELISA reaction, which contains the dynamic colorimetric changes. With the YOLOv8 deep learning alogrithm and the Rabbit IgG as the model for ELISA assay, we can use the initial 20 min signal instead of waiting for 30 min for full reaction, achieving a 33% reduction in the turnaround time. Moreover, the overall accuracy at 20 min is 94.1%, which is slightly improvement to the 93.5% using a traditional single snapshot method at 30 min. This method not only accelerates result interpretation but also enhances the overall efficiency of diagnostics, making it particularly valuable for time-sensitive point-of-care testing applications. Lastly, to demonstrate its real-world use, we expanded to the disease biomarker cTnI detection and obtained accuracy of 98.1% within only 10 min, compared to 25 min with 97.8% accuracy in traditional methods.
Collapse
Affiliation(s)
- Jia Zhu
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- School of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Kai Hoettges
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Yongjie Wang
- School of Science, Harbin Institute of Technology-Shenzhen 518000 Shenzhen, China
| | - Haibo Ma
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Yong Hu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin 130000, China
| | - Eng Gee Lim
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Quan Zhang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215000, China
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool L69 3GJ, U.K
| |
Collapse
|
5
|
Järvinen T, Pitkänen O, Laurila T, Mannerkorpi M, Saarakkala S, Kordas K. A customizable wireless potentiostat for assessing Ni(OH) 2 decorated vertically aligned MoS 2 thin films for electrochemical sensing of dopamine. NANOSCALE ADVANCES 2025; 7:1374-1383. [PMID: 39845132 PMCID: PMC11747886 DOI: 10.1039/d4na00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
In this study, we show that on-chip grown, vertically aligned MoS2 films that are decorated with Ni(OH)2 catalyst are suitable materials to be applied as working electrodes in electrochemical sensing. The constructed sensors display a highly repeatable response to dopamine, used as a model analyte, in a large dynamic range from 1 μM to 1 mM with a theoretical detection limit of 0.1 μM. In addition, to facilitate practical implementation of the sensor chips, we also demonstrate a low power wireless cyber-physical system that we designed and accommodated for cyclic voltammetry measurements. The developed cost-effective and portable instrument enables straightforward data acquisition, transfer and visualization through an Android mobile interface, and has an accuracy comparable to reference analysis of our sensors using a commercial table-top laboratory potentiostat.
Collapse
Affiliation(s)
- Topias Järvinen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu PO Box 4500 90014 Finland
| | - Olli Pitkänen
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu PO Box 4500 90014 Finland
| | - Tomi Laurila
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University PO Box 13500, 00076 Aalto Finland
| | - Minna Mannerkorpi
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu PO Box 5000 90014 Finland
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu PO Box 5000 90014 Finland
| | - Krisztian Kordas
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu PO Box 4500 90014 Finland
| |
Collapse
|
6
|
Meng Q, Li H, Zhao W, Song M, Zhang W, Li X, Chen J, Wang L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. NANOSCALE 2024; 16:20864-20884. [PMID: 39452895 DOI: 10.1039/d4nr03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Field-effect transistor (FET)-based biosensors not only enable label-free detection by measuring the intrinsic charges of biomolecules, but also offer advantages such as high sensitivity, rapid response, and ease of integration. This enables them to play a significant role in disease diagnosis, point-of-care detection, and drug screening, among other applications. However, when FET sensors detect biomolecules in physiological solutions (such as whole blood, serum, etc.), the charged molecules will be surrounded by oppositely charged ions in the solution. This causes the effective charge carried by the biomolecules to be shielded, thereby significantly weakening their ability to induce charge rearrangement at the sensing interface. Such shielding hinders the change of carriers inside the sensing material, reduces the variation of current between the source and drain electrodes of the FET, and seriously limits the sensitivity and reliability of the device. In this article, we summarize the research progress in overcoming the Debye screening effect in FET-based biosensors over the past decade. Here, we first elucidate the working principles of FET sensors for detecting biomarkers and the mechanism of the Debye screening. Subsequently, we emphasize optimization strategies to overcome the Debye screening effect. Finally, we summarize and provide an outlook on the research on FET biosensors in overcoming the Debye screening effect, hoping to help the development of FET electronic devices with high sensitivity, specificity, and stability. This work is expected to provide new ideas for next-generation biosensing technology.
Collapse
Affiliation(s)
- Qi Meng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
7
|
Yin X, Ji X, Liu W, Li X, Wang M, Xin Q, Zhang J, Yan Z, Song A. Electrolyte-gated amorphous IGZO transistors with extended gates for prostate-specific antigen detection. LAB ON A CHIP 2024; 24:3284-3293. [PMID: 38847194 DOI: 10.1039/d4lc00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The prostate-specific antigen (PSA) test is considered an important way for preoperative diagnosis and accurate screening of prostate cancer. Current antigen detection methods, including radioimmunoassay, enzyme-linked immunosorbent assay and microfluidic electrochemical detection, feature expensive equipment, long testing time and poor stability. Here, we propose a portable biosensor composed of electrolyte-gated amorphous indium gallium zinc oxide (a-IGZO) transistors with an extended gate, which can achieve real-time, instant PSA detection at a low operating voltage (<2 V) owing to the liquid-free ionic conductive elastomer (ICE) serving as the gate dielectric. The electric double layer (EDL) capacitance in ICE enhances the accumulation of carriers in the IGZO channel, leading to strong gate modulation, which enables the IGZO transistor to have a small subthreshold swing (<0.5 V dec-1) and a high on-state current (∼4 × 10-4 A). The separate, biodegradable, and pluggable sensing pad, serving as an extended gate connected to the IGZO transistor, prevents contamination and depletion arising from direct contact with biomolecular buffers, enabling the IGZO transistor to maintain superior electronic performance for at least six months. The threshold voltage and channel current of the transistor exhibit excellent linear response to PSA molecule concentrations across five orders of magnitude ranging from 1 fg mL-1 to 10 pg mL-1, with a detection limit of 400 ag mL-1 and a detection time of ∼5.1 s. The fabricated biosensors offer a point-of-care system for antigen detection, attesting the feasibility of the electrolyte-gated transistors in clinical screening, healthcare diagnostics and biological management.
Collapse
Affiliation(s)
- Xuemei Yin
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Xingqi Ji
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Wenlong Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Xiaoqian Li
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Mingyang Wang
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Qian Xin
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
| | - Jiawei Zhang
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Zhuocheng Yan
- School of Integrated Circuits, Shandong University, Jinan 250100, China.
| | - Aimin Song
- Institute of Nanoscience and Applications, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
8
|
Zhang X, Chen S, Ma H, Sun T, Cui X, Huo P, Man B, Yang C. Asymmetric Schottky Barrier-Generated MoS 2/WTe 2 FET Biosensor Based on a Rectified Signal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:226. [PMID: 38276744 PMCID: PMC10820193 DOI: 10.3390/nano14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Field-effect transistor (FET) biosensors can be used to measure the charge information carried by biomolecules. However, insurmountable hysteresis in the long-term and large-range transfer characteristic curve exists and affects the measurements. Noise signal, caused by the interference coefficient of external factors, may destroy the quantitative analysis of trace targets in complex biological systems. In this report, a "rectified signal" in the output characteristic curve, instead of the "absolute value signal" in the transfer characteristic curve, is obtained and analyzed to solve these problems. The proposed asymmetric Schottky barrier-generated MoS2/WTe2 FET biosensor achieved a 105 rectified signal, sufficient reliability and stability (maintained for 60 days), ultra-sensitive detection (10 aM) of the Down syndrome-related DYRK1A gene, and excellent specificity in base recognition. This biosensor with a response range of 10 aM-100 pM has significant application potential in the screening and rapid diagnosis of Down syndrome.
Collapse
Affiliation(s)
- Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
9
|
Oliveira DCDB, Costa FHM, da Silva JAF. The Integration of Field Effect Transistors to Microfluidic Devices. MICROMACHINES 2023; 14:791. [PMID: 37421024 DOI: 10.3390/mi14040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 07/09/2023]
Abstract
Devices that integrate field effect transistors into microfluidic channels are becoming increasingly promising in the medical, environmental, and food realms, among other applications. The uniqueness of this type of sensor lies in its ability to reduce the background signals existing in the measurements, which interfere in obtaining good limits of detection for the target analyte. This and other advantages intensify the development of selective new sensors and biosensors with coupling configuration. This review work focused on the main advances in the fabrication and application of field effect transistors integrated into microfluidic devices as a way of identifying the potentialities that exist in these systems when used in chemical and biochemical analyses. The emergence of research on integrated sensors is not a recent study, although more recently the progress of these devices is more accentuated. Among the studies that used integrated sensors with electrical and microfluidic parts, those that investigated protein binding interactions seem to be the ones that expanded the most due, among other things, to the possibility of obtaining several physicochemical parameters involved in protein-protein interactions. Studies in this area have a great possibility of advancing innovations in sensors with electrical and microfluidic interfaces in new designs and applications.
Collapse
Affiliation(s)
| | - Fernando Henrique Marques Costa
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, SP, Brazil
| | - José Alberto Fracassi da Silva
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, SP, Brazil
- National Institute of Science and Technology of Bioanalytics, INCTBio, Campinas, SP, Brazil
| |
Collapse
|