1
|
Zhang Y, Mi F, Zhao Y, Geng P, Zhang S, Song H, Chen G, Yan B, Guan M. Multifunctional nanozymatic biosensors: Awareness, regulation and pathogenic bacteria detection. Talanta 2025; 292:127957. [PMID: 40154048 DOI: 10.1016/j.talanta.2025.127957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/24/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
It is estimated that approximately 700,000 fatalities occur annually due to infections attributed to various pathogens, which are capable of dissemination via multiple environmental vectors, including air, water, and soil. Consequently, there is an urgent need to enhance and refine rapid detection technologies for pathogens to prevent and control the spread of associated diseases. This review focuses on applying nanozymes in constructing biosensors, particularly their advancement in detecting pathogenic bacteria. Nanozymes, which are nanomaterials exhibiting enzyme-like activity, combine unique magnetic, optical, and electronic properties with structural diversity. This blend of characteristics makes them highly appealing for use in biocatalytic applications. Moreover, their nanoscale dimensions facilitate effective contact with pathogenic bacteria, leading to efficient detection and antibacterial effects. This article briefly summarizes the development, classification, and strategies for regulating the catalytic activity of nanozymes. It primarily focuses on recent advancements in constructing biosensors that utilize nanozymes as probes for sensitively detecting pathogenic bacteria. The discussion covers the development of various optical and electrochemical biosensors, including colorimetric, fluorescence, surface-enhanced Raman scattering (SERS), and electrochemical methods. These approaches provide a reliable solution for the sensitive detection of pathogenic bacteria. Finally, the challenges and future development directions of nanozymes in pathogen detection are discussed.
Collapse
Affiliation(s)
- Yiyao Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| | - Yajun Zhao
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Pengfei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Shan Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Han Song
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Guotong Chen
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Bo Yan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China.
| |
Collapse
|
2
|
Matar Z, Zainon Noor Z, Al-Hindi A, Yuliarto B. Recent Advances in Paper-Based Nano-Biosensors for Waterborne Pathogen Detection: Challenges and Solutions. Chem Biodivers 2025:e202403451. [PMID: 40071492 DOI: 10.1002/cbdv.202403451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
Ensuring safe access to water and public health requires the availability of sensitive and fast response detection tools. Traditional detection tools present challenges of duration, procedure intricacy, and the need for trained staff. An advanced approach involves utilizing biosensors and nanomaterials, which have the capacity to detect the target analyte with high sensitivity and specificity in a short time. To date, researchers have created new techniques and materials to improve the sensitivity, detection limit, durability, and real-time analytical capabilities of biosensors. This critical review provides a thorough analysis of recent advances in paper-based nano-biosensors used for detecting waterborne pathogens, along with challenges faced in entering the market and potential solutions. The objective is to provide a comprehensive understanding of the capabilities of biosensors in detecting waterborne diseases, by evaluating technologies based on their range of concentrations and limits of detection. The review analyzed multiple biosensors and evaluated the underlying mechanisms that contribute to their effectiveness in detecting waterborne diseases. The discussion also addressed the influence of including nanomaterials on enhancing the performance of biosensors, specifically in relation to specificity, selectivity, and durability. Additionally, the challenges of translating the proof-of-concept biosensor into market products are discussed with potential solutions. The major findings reveal various biosensor technologies with distinct advantages and limitations. The thorough examination of biosensor technologies and the integration of nanomaterials offers valuable insights for academics, professionals, and policymakers involved in water quality monitoring. Additionally, it advocates for additional research to improve the performance of biosensors and address existing challenges.
Collapse
Affiliation(s)
- Zainab Matar
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Zainura Zainon Noor
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- Centre for Environmental Sustainability & Water Security (IPASA), Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Adnan Al-Hindi
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University of Gaza, Gaza, Palestine
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
3
|
Huang L, Zhou Y, Hu X, Yang Z. Emerging Combination of Hydrogel and Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409711. [PMID: 39679847 DOI: 10.1002/smll.202409711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Electrochemical sensors are among the most promising technologies for biomarker research, with outstanding sensitivity, selectivity, and rapid response capabilities that make them important in medical diagnostics and prognosis. Recently, hydrogels have gained attention in the domain of electrochemical biosensors because of their superior biocompatibility, excellent adhesion, and ability to form conformal contact with diverse surfaces. These features provide distinct advantages, particularly in the advancement of wearable biosensors. This review examines the contemporary utilization of hydrogels in electrochemical sensing, explores strategies for optimization and prospective development trajectories, and highlights their distinctive advantages. The objective is to provide an exhaustive overview of the foundational principles of electrochemical sensing systems, analyze the compatibility of hydrogel properties with electrochemical methodologies, and propose potential healthcare applications to further illustrate their applicability. Despite significant advances in the development of hydrogel-based electrochemical biosensors, challenges persist, such as improving material fatigue resistance, interfacial adhesion, and maintaining balanced water content across various environments. Overall, hydrogels have immense potential in flexible biosensors and provide exciting opportunities. However, resolving the current obstacles will necessitate additional research and development efforts.
Collapse
Affiliation(s)
- Lingting Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuyang Zhou
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
4
|
Zaidan L, Novodchuk I, H.Xu A, Nica A, Takaloo S, Lloyd C, Karimi R, Sanderson J, Bajcsy M, Yavuz M. Rapid, Selective, and Ultra-Sensitive Field Effect Transistor-Based Detection of Escherichia coli. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3648. [PMID: 39124311 PMCID: PMC11313016 DOI: 10.3390/ma17153648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Escherichia coli (E. coli) was among the first organisms to have its complete genome published (Genome Sequence of E. coli 1997 Science). It is used as a model system in microbiology research. E. coli can cause life-threatening illnesses, particularly in children and the elderly. Possible contamination by the bacteria also results in product recalls, which, alongside the potential danger posed to individuals, can have significant financial consequences. We report the detection of live Escherichia coli (E. coli) in liquid samples using a biosensor based on a field-effect transistor (FET) biosensor with B/N co-coped reduced graphene oxide (rGO) gel (BN-rGO) as the transducer material. The FET was functionalized with antibodies to detect E. coli K12 O-antigens in phosphate-buffered saline (PBS). The biosensor detected the presence of planktonic E. coli bacterial cells within a mere 2 min. The biosensor exhibited a limit of detection (LOD) of 10 cells per sample, which can be extrapolated to a limit of detection at the level of a single cell per sample and a detection range of at least 10-108 CFU/mL. The selectivity of the biosensor for E. coli was demonstrated using Bacillus thuringiensis (B. thuringiensis) as a sample contaminant. We also present a comparison of our functionalized BN-rGO FET biosensor with established detection methods of E. coli k12 bacteria, as well as with state-of-the-art detection mechanisms.
Collapse
Affiliation(s)
- Liena Zaidan
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Inna Novodchuk
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Biograph Sense Inc., Kitchener, ON N2R 1V1, Canada
| | - Alexander H.Xu
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alexandru Nica
- National Institute for Materials Science (NIMS), University of Tsukuba, Tsukuba 305-0044, Ibaraki, Japan
| | - Saeed Takaloo
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Reza Karimi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joe Sanderson
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michal Bajcsy
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mustafa Yavuz
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
6
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|