1
|
Jiang LX, Laskin J. Pneumatically Assisted Microfluidic Probe for Enhanced Mass Spectrometry Imaging Performance. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:883-887. [PMID: 40116008 DOI: 10.1021/jasms.5c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
A pneumatically assisted microfluidic probe (MFP) with two microfluidic channels has been developed for nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) of biological samples. This design simplifies the experimental setup, making it independent of the vacuum suction at the mass spectrometer inlet. The implementation of pneumatically assisted solvent flow through the probe enables stable, high solvent flow rates required to maintain a consistent liquid bridge during high-throughput MSI experiments. This approach addresses challenges associated with using MFP nano-DESI probes on mass spectrometers that have limited vacuum suction and the operation of MFPs with small microfluidic channels. We demonstrate the robustness of the pneumatically assisted MFP with 30 μm channels, which cannot be used for high-throughput MSI experiments without pneumatic assistance, by successfully imaging five mouse brain tissue sections without interruptions.
Collapse
Affiliation(s)
- Li-Xue Jiang
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Li X, Hu H, Yang M, Laskin J. A Low-Cost, High-Resolution Thermoplastic Microfluidic Probe for Mass Spectrometry Imaging of Biological Tissue Samples. Anal Chem 2025; 97:3207-3212. [PMID: 39903693 DOI: 10.1021/acs.analchem.4c06087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mass spectrometry imaging (MSI) using nanospray desorption electrospray ionization (nano-DESI) has been extensively used for label-free mapping of hundreds of molecules in biological samples with minimal sample pretreatment. While both nano-DESI probes made of two fused silica capillaries and glass microfluidic probes (MFP) have been developed for imaging biological tissues with high spatial resolution, MFPs significantly enhance the robustness and throughput of nano-DESI MSI experiments. Despite their advantages, the fabrication of glass microfluidic devices is costly and requires specialized equipment or cleanroom facilities. Meanwhile, plastic microfluidic devices often suffer from limited solvent compatibility and low fabrication precision, restricting their achievable spatial resolution. To overcome these limitations, we have developed a low-cost microfluidic probe made from cyclic olefin copolymer (COC), a widely used thermoplastic material known for its excellent chemical resistance. The probe is fabricated using wire imprinting and thermal bonding in a standard laboratory setting. We estimate the achievable spatial resolution of the COC-MFP of 5-7 μm and demonstrate its robustness by imaging a large (20.0 mm × 9.5 mm) human kidney tissue section with high sensitivity. This affordable thermoplastic probe makes high spatial resolution nano-DESI MSI more accessible, broadening its applications in the scientific community.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hang Hu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
WANG J, LI X, FAN R, LÜ P, YIN R. [Recent progress in mass spectrometry imaging using nanospray desorption electrospray ionization]. Se Pu 2025; 43:43-49. [PMID: 39722620 PMCID: PMC11686469 DOI: 10.3724/sp.j.1123.2024.07013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Indexed: 12/28/2024] Open
Abstract
Ambient mass spectrometry imaging (MSI) enables hundreds of analytes in tissue sections to be directly mapped at atmospheric pressure with minimal sample preparation. This field is currently experiencing rapid growth, with numerous reported ambient ionization techniques resulting in a "hundred flowers bloom" situation. Nanospray desorption electrospray ionization (nano-DESI), developed by the Laskin group in 2010, is a widely used liquid-extraction-based ambient ionization technique that was first used for mass spectrometry imaging of tissue in 2012. The nano-DESI probe comprises a primary capillary and a nanospray capillary, with the latter efficiently transferring analyte-containing droplets via a tiny liquid bridge formed between the probe and sample surface, thereby enabling nanoelectrospray ionization (nano-ESI) in front of the inlet of a mass spectrometer. The advantages of nano-DESI MSI include minimal sample preparation, high spatial resolution, and high sensitivity. These features are well-suited for imaging various sample types, including frozen tissue sections, microbial communities, and environmental samples. A PubMed-database search using the "nano-DESI" keyword revealed 72 related articles in the 2010-2024 period, with 34 of them published between 2021 and 2024, which indicates that nano-DESI has rapidly developed as an ambient ionization technique over recent years. Herein, we briefly introduce key nano-DESI-MSI research progress reported in the past three years with the aim of better understanding and facilitating the use of this technology. We first discuss advances in ion-source development. Since no commercial nano-DESI source exists, designing and constructing ion sources remain technical challenges that limit its development. Nano-DESI has been successfully coupled with various types of mass spectrometer, including LTQ Orbitrap, quadrupole-Orbitrap (Q Exactive), 6560 IM QTOF, timsTOF Pro2, triple quadrupole, and FTICR. These couplings have significantly expanded the applications range of the nano-DESI technique. Secondly, lipid analysis is a major nano-DESI-MSI applications area. While the complexities of lipid structures present great challenges for nano-DESI MSI, new nano-DESI coupling techniques have enabled the identification and imaging of fine lipid structures. Several novel imaging methods have recently been introduced to address difficulties associated with identifying lipid structures, such as distinguishing carbon-carbon double bonds (C=C) and sn-positional isomers. We finally highlight recent research progress in the nano-DESI MSI of intact protein assembles and proteoforms, which is a growing hotspot in the field. Unlike small lipid molecules, large protein molecules are very challenging to image and consequently demand higher instrumental performance (e.g., ionization efficiency, mass range, and sensitivity). In a similar manner to the ESI technique, nano-DESI tends to generate multiply charged molecular ions, which endows it with a significant advantage when imaging large protein molecules. Recent years have witnessed important nano-DESI-MSI progress for studying protein-ligand interactions and identifying and imaging endogenous proteoforms. In summary, this article focuses on nano-DESI research progress in terms of ion-source development, lipid-structure analysis, and spatial proteomics over the past three years and discusses key challenges that need to be addressed in the field.
Collapse
|
4
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Hu H, Tan S, Hu J. Deep learning enabled in vitro predicting biological tissue thickness using force measurement device. Comput Biol Med 2024; 182:109181. [PMID: 39326264 DOI: 10.1016/j.compbiomed.2024.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Accurate perception of biological tissues (BT) thickness is essential for preliminary evaluation of medical diagnosis and animal nutrition. However, traditional thickness measuring approaches of BT require complex operation, high-cost, and trigger biological stress response. Herein this study, an novel in vitro BT thickness measuring approach integrated with force test system (FST) and the discrete multiwavelet transform convolutional neural network (DMWA-CNN) prediction model based on deep learning are proposed. Simultaneously, several comprehensive experiments and model comparisons are conducted to demonstrate the superiority of the proposed approach. By establishing a DMWA-CNN demonstrates higher estimation accuracy than other traditional algorithm, achieving 100 % accuracy for artificial BT. Moreover, the experimental results indicate that proposed approach is robust to elastic modulus variation (E), external load variation (F), and small thickness differences (Ts). In addition, four kinds of the pork' thickness are experimentally measured, and the accuracy value is not less than 98.2 %. The thickness of BT determined using the FST and DMWA-CNN algorithm demonstrate potential application in the biomechanical parameter prediction.
Collapse
Affiliation(s)
- Haibin Hu
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Engineering Research Center of Animal Husbandry Facility Technology Exploitation, Nanchang, 330045, China
| | - Sheng Tan
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Hu
- College of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Engineering Research Center of Animal Husbandry Facility Technology Exploitation, Nanchang, 330045, China.
| |
Collapse
|
6
|
Iqfath M, Wali SN, Amer S, Hernly E, Laskin J. Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging (nano-DESI MSI): A Tutorial Review. ACS MEASUREMENT SCIENCE AU 2024; 4:475-487. [PMID: 39430971 PMCID: PMC11487661 DOI: 10.1021/acsmeasuresciau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/22/2024]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) is a liquid-based ambient mass spectrometry imaging (MSI) technique that enables visualization of analyte distributions in biological samples down to cellular-level spatial resolution. Since its inception, significant advancements have been made to the nano-DESI experimental platform to facilitate molecular imaging with high throughput, deep molecular coverage, and spatial resolution better than 10 μm. The molecular selectivity of nano-DESI MSI has been enhanced using new data acquisition strategies, the development of separation and online derivatization approaches for isobar separation and isomer-selective imaging, and the optimization of the working solvent composition to improve analyte extraction and ionization efficiency. Furthermore, nano-DESI MSI research has underscored the importance of matrix effects and established normalization methods for accurately measuring concentration gradients in complex biological samples. This tutorial offers a comprehensive guide to nano-DESI experiments, detailing fundamental principles and data acquisition and processing methods and discussing essential operational parameters.
Collapse
Affiliation(s)
- Mushfeqa Iqfath
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Syeda Nazifa Wali
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sara Amer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emerson Hernly
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Jiang LX, Hilger RT, Laskin J. Hardware and software solutions for implementing nanospray desorption electrospray ionization (nano-DESI) sources on commercial mass spectrometers. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5065. [PMID: 38866597 PMCID: PMC11330693 DOI: 10.1002/jms.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization mass spectrometry imaging (MSI) approach that enables spatial mapping of biological and environmental samples with high spatial resolution and throughput. Because nano-DESI has not yet been commercialized, researchers develop their own sources and interface them with different commercial mass spectrometers. Previously, several protocols focusing on the fabrication of nano-DESI probes have been reported. In this tutorial, we discuss different hardware requirements for coupling the nano-DESI source to commercial mass spectrometers, such as the safety interlock, inlet extension, and contact closure. In addition, we describe the structure of our custom software for controlling the nano-DESI MSI platform and provide detailed instructions for its usage. With this tutorial, interested researchers should be able to implement nano-DESI experiments in their labs.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Ryan T. Hilger
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, United States
| |
Collapse
|
8
|
Jiang LX, Polack M, Li X, Yang M, Belder D, Laskin J. A monolithic microfluidic probe for ambient mass spectrometry imaging of biological tissues. LAB ON A CHIP 2023; 23:4664-4673. [PMID: 37782224 PMCID: PMC10823490 DOI: 10.1039/d3lc00637a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Ambient mass spectrometry imaging (MSI) is a powerful technique that allows for the simultaneous mapping of hundreds of molecules in biological samples under atmospheric conditions, requiring minimal sample preparation. We have developed nanospray desorption electrospray ionization (nano-DESI), a liquid extraction-based ambient ionization technique, which has proven to be sensitive and capable of achieving high spatial resolution. We have previously described an integrated microfluidic probe, which simplifies the nano-DESI setup, but is quite difficult to fabricate. Herein, we introduce a facile and scalable strategy for fabricating microfluidic devices for nano-DESI MSI applications. Our approach involves the use of selective laser-assisted etching (SLE) of fused silica to create a monolithic microfluidic probe (SLE-MFP). Unlike the traditional photolithography-based fabrication, SLE eliminates the need for the wafer bonding process and allows for automated, scalable fabrication of the probe. The chamfered design of the sampling port and ESI emitter significantly reduces the amount of polishing required to fine-tune the probe thereby streamlining and simplifying the fabrication process. We have also examined the performance of a V-shaped probe, in which only the sampling port is fabricated using SLE technology. The V-shaped design of the probe is easy to fabricate and provides an opportunity to independently optimize the size and shape of the electrospray emitter. We have evaluated the performance of SLE-MFP by imaging mouse tissue sections. Our results demonstrate that SLE technology enables the fabrication of robust monolithic microfluidic probes for MSI experiments. This development expands the capabilities of nano-DESI MSI and makes the technique more accessible to the broader scientific community.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Leipzig, 04103, Germany.
| | - Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Leipzig, 04103, Germany.
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|