1
|
Salim M, Liu Y, Sorkhei M, Ntoula D, Foukakis T, Fredriksson I, Wang Y, Eklund M, Azizpour H, Smith K, Strand F. AI-based selection of individuals for supplemental MRI in population-based breast cancer screening: the randomized ScreenTrustMRI trial. Nat Med 2024; 30:2623-2630. [PMID: 38977914 PMCID: PMC11405258 DOI: 10.1038/s41591-024-03093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 07/10/2024]
Abstract
Screening mammography reduces breast cancer mortality, but studies analyzing interval cancers diagnosed after negative screens have shown that many cancers are missed. Supplemental screening using magnetic resonance imaging (MRI) can reduce the number of missed cancers. However, as qualified MRI staff are lacking, the equipment is expensive to purchase and cost-effectiveness for screening may not be convincing, the utilization of MRI is currently limited. An effective method for triaging individuals to supplemental MRI screening is therefore needed. We conducted a randomized clinical trial, ScreenTrustMRI, using a recently developed artificial intelligence (AI) tool to score each mammogram. We offered trial participation to individuals with a negative screening mammogram and a high AI score (top 6.9%). Upon agreeing to participate, individuals were assigned randomly to one of two groups: those receiving supplemental MRI and those not receiving MRI. The primary endpoint of ScreenTrustMRI is advanced breast cancer defined as either interval cancer, invasive component larger than 15 mm or lymph node positive cancer, based on a 27-month follow-up time from the initial screening. Secondary endpoints, prespecified in the study protocol to be reported before the primary outcome, include cancer detected by supplemental MRI, which is the focus of the current paper. Compared with traditional breast density measures used in a previous clinical trial, the current AI method was nearly four times more efficient in terms of cancers detected per 1,000 MRI examinations (64 versus 16.5). Most additional cancers detected were invasive and several were multifocal, suggesting that their detection was timely. Altogether, our results show that using an AI-based score to select a small proportion (6.9%) of individuals for supplemental MRI after negative mammography detects many missed cancers, making the cost per cancer detected comparable with screening mammography. ClinicalTrials.gov registration: NCT04832594 .
Collapse
Affiliation(s)
- Mattie Salim
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Radiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Yue Liu
- School of Computer Science and Technology, Royal Institute of Technology (KTH), Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Moein Sorkhei
- School of Computer Science and Technology, Royal Institute of Technology (KTH), Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Dimitra Ntoula
- Breast Radiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Irma Fredriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Yanlu Wang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Eklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hossein Azizpour
- Division of Robotics, Perception, and Learning, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Smith
- School of Computer Science and Technology, Royal Institute of Technology (KTH), Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Fredrik Strand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Breast Radiology Unit, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Faheem M, Tam HZ, Nougom M, Suaris T, Jahan N, Lloyd T, Johnson L, Aggarwal S, Ullah M, Thompson EW, Brentnall AR. Role of Supplemental Breast MRI in Screening Women with Mammographically Dense Breasts: A Systematic Review and Meta-analysis. JOURNAL OF BREAST IMAGING 2024; 6:355-377. [PMID: 38912622 DOI: 10.1093/jbi/wbae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 06/25/2024]
Abstract
BACKGROUND High mammographic density increases breast cancer risk and reduces mammographic sensitivity. We reviewed evidence on accuracy of supplemental MRI for women with dense breasts at average or increased risk. METHODS PubMed and Embase were searched 1995-2022. Articles were included if women received breast MRI following 2D or tomosynthesis mammography. Risk of bias was assessed using QUADAS-2. Analysis used independent studies from the articles. Fixed-effect meta-analytic summaries were estimated for predefined groups (PROSPERO: 230277). RESULTS Eighteen primary research articles (24 studies) were identified in women aged 19-87 years. Breast density was heterogeneously or extremely dense (BI-RADS C/D) in 15/18 articles and extremely dense (BI-RADS D) in 3/18 articles. Twelve of 18 articles reported on increased-risk populations. Following 21 440 negative mammographic examinations, 288/320 cancers were detected by MRI. Substantial variation was observed between studies in MRI cancer detection rate, partly associated with prevalent vs incident MRI exams (prevalent: 16.6/1000 exams, 12 studies; incident: 6.8/1000 exams, 7 studies). MRI had high sensitivity for mammographically occult cancer (20 studies with at least 1-year follow-up). In 5/18 articles with sufficient data to estimate relative MRI detection rate, approximately 2 in 3 cancers were detected by MRI (66.3%, 95% CI, 56.3%-75.5%) but not mammography. Positive predictive value was higher for more recent studies. Risk of bias was low in most studies. CONCLUSION Supplemental breast MRI following negative mammography in women with dense breasts has breast cancer detection rates of ~16.6/1000 at prevalent and ~6.8/1000 at incident MRI exams, considering both high and average risk settings.
Collapse
Affiliation(s)
- Michael Faheem
- Department of Breast Surgery, Barts Health NHS Trust, London, UK
| | - Hui Zhen Tam
- Wolfson Institute of Population Health, Centre for Evaluation and Methods, Queen Mary University of London, London, UK
| | - Magd Nougom
- Department of Breast Surgery, Barts Health NHS Trust, London, UK
| | - Tamara Suaris
- Department of Breast Radiology, Barts Health NHS Trust, London, UK
| | - Noor Jahan
- Department of Breast Radiology, Barts Health NHS Trust, London, UK
| | - Thomas Lloyd
- Department of Radiology, Princess Alexandra Hospital, Brisbane, Australia
| | - Laura Johnson
- Department of Breast Surgery, Barts Health NHS Trust, London, UK
| | - Shweta Aggarwal
- Department of Breast Surgery, Barts Health NHS Trust, London, UK
| | - MdZaker Ullah
- Department of Breast Surgery, Barts Health NHS Trust, London, UK
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Adam R Brentnall
- Wolfson Institute of Population Health, Centre for Evaluation and Methods, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Seely JM, Domonkos V, Verma R. Auditing Abbreviated Breast MR Imaging: Clinical Considerations and Implications. Radiol Clin North Am 2024; 62:687-701. [PMID: 38777543 DOI: 10.1016/j.rcl.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Abbreviated breast MR (AB-MR) imaging is a relatively new breast imaging tool, which maintains diagnostic accuracy while reducing image times compared with full-protocol breast MR (FP-MR) imaging. Breast imaging audits involve calculating individual and organizational metrics, which can be compared with established benchmarks, providing a standard against which performance can be measured. Unlike FP-MR imaging, there are no established benchmarks for AB-MR imaging but studies demonstrate comparable performance for cancer detection rate, positive predictive value 3, sensitivity, and specificity with T2. We review the basics of performing an audit, including strategies to implement if benchmarks are not being met.
Collapse
Affiliation(s)
- Jean M Seely
- Department of Radiology, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada.
| | - Victoria Domonkos
- Department of Radiology, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | - Raman Verma
- Department of Radiology, The Ottawa Hospital, General Campus, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada. https://twitter.com/RamanVermaMD
| |
Collapse
|
4
|
Kim E, Lewin AA. Breast Density: Where Are We Now? Radiol Clin North Am 2024; 62:593-605. [PMID: 38777536 DOI: 10.1016/j.rcl.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Breast density refers to the amount of fibroglandular tissue relative to fat on mammography and is determined either qualitatively through visual assessment or quantitatively. It is a heritable and dynamic trait associated with age, race/ethnicity, body mass index, and hormonal factors. Increased breast density has important clinical implications including the potential to mask malignancy and as an independent risk factor for the development of breast cancer. Breast density has been incorporated into breast cancer risk models. Given the impact of dense breasts on the interpretation of mammography, supplemental screening may be indicated.
Collapse
Affiliation(s)
- Eric Kim
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Alana A Lewin
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA; New York University Grossman School of Medicine, New York University Langone Health, Laura and Isaac Perlmutter Cancer Center, 160 East 34th Street 3rd Floor, New York, NY 10016, USA.
| |
Collapse
|
5
|
Ramli Hamid MT, Ab Mumin N, Abdul Hamid S, Ahmad Saman MS, Rahmat K. Abbreviated breast magnetic resonance imaging (MRI) or digital breast tomosynthesis for breast cancer detection in dense breasts? A retrospective preliminary study with comparable results. Clin Radiol 2024; 79:e524-e531. [PMID: 38267349 DOI: 10.1016/j.crad.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
AIM To compare the diagnostic performance of abbreviated breast magnetic resonance (AB-MR) imaging (MRI) and digital breast tomosynthesis (DBT) for breast cancer detection in Malaysian women with dense breasts, using histopathology as the reference standard. MATERIALS AND METHODS This was a single-centre cross-sectional study of 115 women with American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BIRADS) breast density C and D on DBT with breast lesions who underwent AB-MR from June 2018 to December 2021. AB-MR was performed on a 3 T MRI system with an imaging protocol consisting of three sequences: axial T1 fat-saturated unenhanced; axial first contrast-enhanced; and subtracted first contrast-enhanced with maximum intensity projection (MIP). DBT and AB-MR images were evaluated by two radiologists blinded to the histopathology and patient outcomes. Diagnostic accuracy (sensitivity, specificity, positive predictive value [PPV] and negative predictive value [NPV]) was assessed. RESULT Of the 115 women, the mean age was 50.6 years. There were 48 (41.7%) Malay, 54 (47%) Chinese, and 12 (10.4%) Indian women. The majority (n=87, 75.7%) were from the diagnostic population. Sixty-one (53.1%) were premenopausal and 54 (46.9%) postmenopausal. Seventy-eight (72.4%) had an increased risk of developing breast cancer. Ninety-one (79.1%) women had density C and 24 (20.9%) had density D. There were 164 histopathology-proven lesions; 69 (42.1%) were malignant and 95 (57.9%) were benign. There were 62.8% (n=103/164) lesions detected at DBT. All the malignant lesions 100% (n=69) and 35.7% (n=34) of benign lesions were detected. Of the 61 lesions that were not detected, 46 (75.4%) were in density C, and 15 (24.6%) were in density D. The sensitivity, specificity, PPV, and NPV for DBT were 98.5%, 34.6%, 66.3%, and 94.7%, respectively. There were 65.2% (n=107/164) lesions detected on AB-MR, with 98.6% (n=68) malignant and 41.1% (39) benign lesions detected. The sensitivity, specificity, PPV, and NPV for AB-MR were 98.5%, 43.9%, 67.2%, and 96.2%, respectively. One malignant lesion (0.6%), which was a low-grade ductal carcinoma in-situ (DCIS), was missed on AB-MR. CONCLUSION The present findings suggest that both DBT and AB-MR have comparable effectiveness as an imaging method for detecting breast cancer and have high NPV for low-risk lesions in women with dense breasts.
Collapse
Affiliation(s)
- M T Ramli Hamid
- Department of Radiology, Faculty of Medicine University Teknologi MARA, Sungai Buloh, Selangor, Malaysia.
| | - N Ab Mumin
- Department of Radiology, Faculty of Medicine University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - S Abdul Hamid
- Department of Radiology, Faculty of Medicine University Teknologi MARA, Sungai Buloh, Selangor, Malaysia.
| | - M S Ahmad Saman
- Department of Public Health, Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - K Rahmat
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Abu Abeelh E, AbuAbeileh Z. Comparative Effectiveness of Mammography, Ultrasound, and MRI in the Detection of Breast Carcinoma in Dense Breast Tissue: A Systematic Review. Cureus 2024; 16:e59054. [PMID: 38800325 PMCID: PMC11128098 DOI: 10.7759/cureus.59054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
This systematic review aimed to critically assess the effectiveness of mammography, ultrasound, and magnetic resonance imaging (MRI) in the detection of breast carcinoma within dense breast tissue. An exhaustive search of contemporary literature was undertaken, focusing on the diagnostic accuracy, false positive and negative rates, and clinical implications of the aforementioned imaging modalities. Each modality was assessed in isolation and side by side against the others to draw comparative inferences. While mammography remains a foundational imaging modality, its effectiveness waned within the context of dense breast tissue. Ultrasound demonstrated a strong differentiation prowess, especially among specific demographic cohorts. MRI, despite its exceptional precision and differentiation capabilities, exhibited a tendency for slightly elevated false positive rates. No single modality emerged as singularly superior for all cases. Instead, an integrated approach, combining the strengths of each modality based on individual patient profiles and clinical scenarios, is recommended. This tailored approach ensures optimized detection rates and minimizes diagnostic ambiguities, underscoring the significance of individualized patient care in the field of diagnostic radiology.
Collapse
|
7
|
Kuhl CK. Abbreviated Breast MRI: State of the Art. Radiology 2024; 310:e221822. [PMID: 38530181 DOI: 10.1148/radiol.221822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abbreviated MRI is an umbrella term, defined as a focused MRI examination tailored to answer a single specific clinical question. For abbreviated breast MRI, this question is: "Is there evidence of breast cancer?" Abbreviated MRI of the breast makes maximum use of the fact that the kinetics of breast cancers and of benign tissue differ most in the very early postcontrast phase; therefore, abbreviated breast MRI focuses on this period. The different published approaches to abbreviated MRI include the following three subtypes: (a) short protocols, consisting of a precontrast and either a single postcontrast acquisition (first postcontrast subtracted [FAST]) or a time-resolved series of postcontrast acquisitions with lower spatial resolution (ultrafast [UF]), obtained during the early postcontrast phase immediately after contrast agent injection; (b) abridged protocols, consisting of FAST or UF acquisitions plus selected additional pulse sequences; and (c) noncontrast protocols, where diffusion-weighted imaging replaces the contrast information. Abbreviated MRI was proposed to increase tolerability of and access to breast MRI as a screening tool. But its widening application now includes follow-up after breast cancer and even diagnostic assessment. This review defines the three subtypes of abbreviated MRI, highlighting the differences between the protocols and their clinical implications and summarizing the respective evidence on diagnostic accuracy and clinical utility.
Collapse
Affiliation(s)
- Christiane K Kuhl
- From the Department of Diagnostic and Interventional Radiology, University Hospital Aachen, RWTH Pauwelsstr 30, 52074 Aachen, Germany
| |
Collapse
|
8
|
Hellgren R, Tolocka E, Saracco A, Wilczek B, Sundbom A, Hall P, Dickman PW. Comparing the diagnostic accuracy, reading time, and inter-rater agreement of breast MRI abbreviated and full protocols: a multi-reader study. Acta Radiol 2024; 65:195-201. [PMID: 38115682 PMCID: PMC10903132 DOI: 10.1177/02841851231216552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Earlier studies have shown that abbreviated protocol magnetic resonance imaging (AB-MRI) has similar diagnostic accuracy as the full protocol (Full MRI). PURPOSE To compare the diagnostic accuracy, reading time, and inter-rater agreement of AB-MRI to Full MRI among women without known increased familial risk of breast cancer or prior biopsy. MATERIAL AND METHODS In total, 395 MRI examinations were included in this study. Three readers were blinded to all patient information. The AB-MRI and Full MRI were read separately and in a different random order for each of the readers. Scores 1-2 were considered test negative while scores 3-5 were test positive. A positive reference test was the diagnosis of malignancy; a negative reference test was the absence of a diagnosis of breast cancer within a two-year follow-up. We used a generalized estimating equations approach to compare sensitivity and specificity between the two protocols. We used t-tests to compare the average reading time and Krippendorff's alpha to compare inter-rater agreement. RESULTS MRI examinations of 395 women (median age=56 years) were evaluated. For AB-MRI and Full MRI, respectively, the sensitivity was 93.0% (95% CI=90.6-95.0) vs. 92.0% (95% CI=89.4-94.1), the specificity was 91.7% (95% CI=90.3-92.9) vs. 94.3% (95% CI=93.2-95.3), average reading time was 67 vs. 126 s, and the inter-rater agreement 0.79 vs. 0.83. The difference in sensitivity was not statistically significant (P=0.840), but the difference in specificity was significant (P=0.003). CONCLUSION AB-MRI has similar sensitivity, but somewhat lower specificity. The average reading time for the abbreviated protocol is lower, as is inter-rater agreement.
Collapse
Affiliation(s)
- Roxanna Hellgren
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ernst Tolocka
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
| | - Ariel Saracco
- Department of Mammography, Evidia, Stockholm, Sweden
| | - Brigitte Wilczek
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
| | - Ann Sundbom
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul W Dickman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Brown AL, Vijapura C, Patel M, De La Cruz A, Wahab R. Breast Cancer in Dense Breasts: Detection Challenges and Supplemental Screening Opportunities. Radiographics 2023; 43:e230024. [PMID: 37792590 DOI: 10.1148/rg.230024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Dense breast tissue at mammography is associated with higher breast cancer incidence and mortality rates, which have prompted new considerations for breast cancer screening in women with dense breasts. The authors review the definition and classification of breast density, density assessment methods, breast cancer risk, current legislation, and future efforts and summarize trials and key studies that have affected the existing guidelines for supplemental screening. Cases of breast cancer in dense breasts are presented, highlighting a variety of modalities and specific imaging findings that can aid in cancer detection and staging. Understanding the current state of breast cancer screening in patients with dense breasts and its challenges is important to shape future considerations for care. Shifting the paradigm of breast cancer detection toward early diagnosis for women with dense breasts may be the answer to reducing the number of deaths from this common disease. ©RSNA, 2023 Online supplemental material is available for this article. Quiz questions for this article are available through the Online Learning Center. See the invited commentary by Yeh in this issue.
Collapse
Affiliation(s)
- Ann L Brown
- From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219-0772 (A.L.B., C.V., A.D.L.C., R.W.); and Department of Radiology, Ohio State University Medical Center, Columbus, Ohio (M.P.)
| | - Charmi Vijapura
- From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219-0772 (A.L.B., C.V., A.D.L.C., R.W.); and Department of Radiology, Ohio State University Medical Center, Columbus, Ohio (M.P.)
| | - Mitva Patel
- From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219-0772 (A.L.B., C.V., A.D.L.C., R.W.); and Department of Radiology, Ohio State University Medical Center, Columbus, Ohio (M.P.)
| | - Alexis De La Cruz
- From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219-0772 (A.L.B., C.V., A.D.L.C., R.W.); and Department of Radiology, Ohio State University Medical Center, Columbus, Ohio (M.P.)
| | - Rifat Wahab
- From the Department of Radiology, University of Cincinnati Medical Center, 3188 Bellevue Ave, Cincinnati, OH 45219-0772 (A.L.B., C.V., A.D.L.C., R.W.); and Department of Radiology, Ohio State University Medical Center, Columbus, Ohio (M.P.)
| |
Collapse
|
10
|
Monticciolo DL, Newell MS, Moy L, Lee CS, Destounis SV. Breast Cancer Screening for Women at Higher-Than-Average Risk: Updated Recommendations From the ACR. J Am Coll Radiol 2023; 20:902-914. [PMID: 37150275 DOI: 10.1016/j.jacr.2023.04.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Early detection decreases breast cancer death. The ACR recommends annual screening beginning at age 40 for women of average risk and earlier and/or more intensive screening for women at higher-than-average risk. For most women at higher-than-average risk, the supplemental screening method of choice is breast MRI. Women with genetics-based increased risk, those with a calculated lifetime risk of 20% or more, and those exposed to chest radiation at young ages are recommended to undergo MRI surveillance starting at ages 25 to 30 and annual mammography (with a variable starting age between 25 and 40, depending on the type of risk). Mutation carriers can delay mammographic screening until age 40 if annual screening breast MRI is performed as recommended. Women diagnosed with breast cancer before age 50 or with personal histories of breast cancer and dense breasts should undergo annual supplemental breast MRI. Others with personal histories, and those with atypia at biopsy, should strongly consider MRI screening, especially if other risk factors are present. For women with dense breasts who desire supplemental screening, breast MRI is recommended. For those who qualify for but cannot undergo breast MRI, contrast-enhanced mammography or ultrasound could be considered. All women should undergo risk assessment by age 25, especially Black women and women of Ashkenazi Jewish heritage, so that those at higher-than-average risk can be identified and appropriate screening initiated.
Collapse
Affiliation(s)
- Debra L Monticciolo
- Division Chief, Breast Imaging, Massachusetts General Hospital, Boston, Massachusetts.
| | - Mary S Newell
- Interim Division Chief, Breast Imaging, Emory University, Atlanta, Georgia
| | - Linda Moy
- Associate Chair for Faculty Mentoring, New York University Grossman School of Medicine, New York, New York; Editor-in-Chief, Radiology
| | - Cindy S Lee
- New York University Grossman School of Medicine, New York, New York
| | - Stamatia V Destounis
- Elizabeth Wende Breast Care, Rochester, New York; Chair, ACR Commission on Breast Imaging
| |
Collapse
|
11
|
Tang WJ, Chen SY, Hu WK, Li XL, Zheng BJ, Wang ZS, Ding HJ, Chen LX, Zhang QQ, Yu XM, Sui Y, Wei XH, Guo Y. Abbreviated Versus Full-Protocol MRI for Breast Cancer Neoadjuvant Chemotherapy Response Assessment: Diagnostic Performance by General and Breast Radiologists. AJR Am J Roentgenol 2023; 220:817-825. [PMID: 36752371 DOI: 10.2214/ajr.22.28686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND. Abbreviated protocols could allow wider adoption of MRI in patients undergoing breast cancer neoadjuvant chemotherapy (NAC). However, abbreviated MRI has been explored primarily in screening settings. OBJECTIVE. The purpose of this article was to compare diagnostic performance of abbreviated MRI and full-protocol MRI for evaluation of breast cancer NAC response, stratifying by radiologists' breast imaging expertise. METHODS. This retrospective study included 203 patients with breast cancer (mean age, 52.1 ± 11.2 [SD] years) from two hospitals who underwent MRI before NAC initiation and after NAC completion before surgical resection from March 2017 to April 2021. Abbreviated MRI was extracted from full-protocol MRI and included the axial T2-weighted sequence and precontrast and single early postcontrast T1-weighted sequences. Three general radiologists and three breast radiologists independently interpreted abbreviated and full-protocol MRI in separate sessions, identifying enhancing lesions to indicate residual tumor and measuring lesion size. The reference standard was presence and size of residual tumor on pathologic assessment of post-NAC surgical specimens. RESULTS. A total of 50 of 203 patients had pathologic complete response (pCR). Intraobserver and interobserver agreement for abbreviated and full-protocol MRI for general and breast radiologists ranged from substantial to nearly perfect (κ = 0.70-0.81). Abbreviated MRI compared with full-protocol MRI showed no significant difference for general radiologists in sensitivity (54.7% vs 57.3%, p > .99), specificity (92.8% vs 95.6%, p = .29), or accuracy (83.4% vs 86.2%, p = .30), nor for breast radiologists in sensitivity (60.0% vs 61.3%, p > .99), specificity (94.6% vs 97.4%, p = .22), or accuracy (86.0% vs 88.5%, p = .30). Sensitivity, specificity, and accuracy were not significantly different between protocols for any reader individually (p > .05). Mean difference in residual tumor size on MRI relative to pathology for abbreviated protocol ranged for general radiologists from -0.19 to 0.03 mm and for breast radiologists from -0.15 to -0.05 mm, and for full protocol ranged for general radiologists from 0.57 to 0.65 mm and for breast radiologists from 0.66 to 0.79 mm. CONCLUSION. Abbreviated compared with full-protocol MRI showed similar intraobserver and interobserver agreement and no significant difference in diagnostic performance. Full-protocol MRI but not abbreviated MRI slightly overestimated pathologic tumor sizes. CLINICAL IMPACT. Abbreviated protocols may facilitate use of MRI for post-NAC response assessment by general and breast radiologists.
Collapse
Affiliation(s)
- Wen-Jie Tang
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Si-Yi Chen
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Wen-Ke Hu
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Xue-Li Li
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Bing-Jie Zheng
- Department of Radiology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen-Sui Wang
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Han-Jun Ding
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Lei-Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Qiong-Qiong Zhang
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Xiao-Meng Yu
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Yi Sui
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Xin-Hua Wei
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| | - Yuan Guo
- Department of Radiology, Guangzhou First People's Hospital, No 1 Panfu Rd, Guangzhou, 510180, China
| |
Collapse
|
12
|
Marshall H, Burkard-Mandel L, Hsu J, Durieux J, Shikhman R, Plecha D. Abbreviated Breast MRI: Our Two-Year Initial Experience. JOURNAL OF BREAST IMAGING 2023; 5:318-328. [PMID: 38416894 DOI: 10.1093/jbi/wbad017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 03/01/2024]
Abstract
OBJECTIVE The aim of this study was to retrospectively evaluate and present our two-year experience with abbreviated breast MRI at our academic institution as a screening tool to identify primary breast cancers. METHODS Employing eight specialty trained breast radiologists, studies were interpreted using the BI-RADS MRI lexicon in this IRB-approved retrospective study. The protocol utilized T1-weighted, fat-saturated, pre- and post-contrast, short T1 inversion recovery images, and was completed within 10 minutes. Abbreviated breast MRI was offered to asymptomatic women of all breast densities, whose ages ranged from 24 to 90 years. Statistical analysis was performed for comparative data utilizing estimated odds ratios. RESULTS Of 1338 patients that met inclusion criteria, 83% (1111/1338) were BI-RADS 1 or 2, 9.0% (121/1338) were BI-RADS 3, and 8% (106/1338) were categorized as either BI-RADS 4 or 5 with recommended biopsy. Biopsy of BI-RADS 4 and 5 categorized patients yielded 15 cancers for a positive predictive value (PPV) 2 of 14.2% and a PPV3 of 18.5%, with 76% (81/106) of patients undergoing the recommended biopsy. An additional cancer was detected in a BI-RADS 3 finding. All cancers detected were in women with heterogeneously dense or extremely dense breasts. Therefore, 16 cancers were detected, yielding a cancer detection rate of 12.0 per 1000. Over the next 12 to 24 months, no interval cancers were detected. CONCLUSION Abbreviated breast MRI demonstrates a higher cancer detection rate compared with mammography only and may provide a supplemental screening method to detect breast cancers in patients with varying risk factors.
Collapse
Affiliation(s)
- Holly Marshall
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Lauren Burkard-Mandel
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Jerry Hsu
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Jared Durieux
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | | | - Donna Plecha
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| |
Collapse
|
13
|
Hussein H, Abbas E, Keshavarzi S, Fazelzad R, Bukhanov K, Kulkarni S, Au F, Ghai S, Alabousi A, Freitas V. Supplemental Breast Cancer Screening in Women with Dense Breasts and Negative Mammography: A Systematic Review and Meta-Analysis. Radiology 2023; 306:e221785. [PMID: 36719288 DOI: 10.1148/radiol.221785] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background The best supplemental breast cancer screening modality in women at average risk or intermediate risk for breast cancer with dense breast and negative mammogram remains to be determined. Purpose To conduct systematic review and meta-analysis comparing clinical outcomes of the most common available supplemental screening modalities in women at average risk or intermediate risk for breast cancer in patients with dense breasts and mammography with negative findings. Materials and Methods A comprehensive search was conducted until March 12, 2020, in Medline, Epub Ahead of Print and In-Process and Other Non-Indexed Citations; Embase Classic and Embase; Cochrane Central Register of Controlled Trials; and Cochrane Database of Systematic Reviews, for Randomized Controlled Trials and Prospective Observational Studies. Incremental cancer detection rate (CDR); positive predictive value of recall (PPV1); positive predictive value of biopsies performed (PPV3); and interval CDRs of supplemental imaging modalities, digital breast tomosynthesis, handheld US, automated breast US, and MRI in non-high-risk patients with dense breasts and mammography negative for cancer were reviewed. Data metrics and risk of bias were assessed. Random-effects meta-analysis and two-sided metaregression analyses comparing each imaging modality metrics were performed (PROSPERO; CRD42018080402). Results Twenty-two studies reporting 261 233 screened patients were included. Of 132 166 screened patients with dense breast and mammography negative for cancer who met inclusion criteria, a total of 541 cancers missed at mammography were detected with these supplemental modalities. Metaregression models showed that MRI was superior to other supplemental modalities in CDR (incremental CDR, 1.52 per 1000 screenings; 95% CI: 0.74, 2.33; P < .001), including invasive CDR (invasive CDR, 1.31 per 1000 screenings; 95% CI: 0.57, 2.06; P < .001), and in situ disease (rate of ductal carcinoma in situ, 1.91 per 1000 screenings; 95% CI: 0.10, 3.72; P < .04). No differences in PPV1 and PPV3 were identified. The limited number of studies prevented assessment of interval cancer metrics. Excluding MRI, no statistically significant difference in any metrics were identified among the remaining imaging modalities. Conclusion The pooled data showed that MRI was the best supplemental imaging modality in women at average risk or intermediate risk for breast cancer with dense breasts and mammography negative for cancer. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Hooley and Butler in this issue.
Collapse
Affiliation(s)
- Heba Hussein
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Engy Abbas
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Sareh Keshavarzi
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Rouhi Fazelzad
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Karina Bukhanov
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Supriya Kulkarni
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Frederick Au
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Sandeep Ghai
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Abdullah Alabousi
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| | - Vivianne Freitas
- From the Joint Department of Medical Imaging-Breast Division, University of Toronto, University Health Network, Sinai Health System, Women's College Hospital, 610 University Ave, Toronto, ON, Canada M5G 2M9 (H.H., E.A., K.B., S. Kulkarni, F.A., S.G., V.F.); Department of Radiology, Worcestershire Acute Hospitals NHS Trust, Worcester, United Kingdom (H.H.); Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada (S. Keshavarzi); Department of Library and Information Services, University Health Network-Princess Margaret Cancer Centre, Toronto, Canada (R.F.); and Faculty of Health Sciences, Department of Radiology, McMaster University, St. Joseph's Healthcare, Hamilton, Canada (A.A.)
| |
Collapse
|
14
|
Maimone S, Morozov AP, Letter HP, Robinson KA, Wasserman MC, Li Z, Maxwell RW. Abbreviated Molecular Breast Imaging: Feasibility and Future Considerations. JOURNAL OF BREAST IMAGING 2022; 4:590-599. [PMID: 38416994 DOI: 10.1093/jbi/wbac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 03/01/2024]
Abstract
OBJECTIVE Molecular breast imaging (MBI) is a supplemental screening modality consistently demonstrating incremental cancer detection over mammography alone; however, its lengthy duration may limit widespread utilization. The study purpose was to assess feasibility of an abbreviated MBI protocol, providing readers with mediolateral oblique (MLO) projections only and assessing performance in lesion detection and localization. METHODS Retrospective IRB-exempt blinded reader study administered to 5 fellowship-trained breast imaging radiologists. Independent reads performed for 124 screening MBI cases, half abnormal and half negative/normal. Readers determined whether an abnormality was present, side of abnormality, and location of abnormality (medial/lateral). Abnormal cases had confirmatory biopsy or surgical pathology; normal cases had imaging follow-up ensuring true negative results. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess performance. A false negative result indicated that a reader failed to detect abnormal uptake; a false positive result indicated a reader incorrectly called an abnormality for a negative case. Tests for association included chi-square, Fisher-exact, and analysis of variance. RESULTS Mean reader performance for detecting abnormal uptake: sensitivity 96.8%, specificity 98.7%, PPV 98.8%, and NPV 96.9%. Accuracy in localizing lesions to the medial or lateral breast was 100%. There were no associations in reader performance with reader experience, reader technique, lesion morphology, or lesion pathology. Median lesion size was 1.0 cm (range: 0.4-8.0 cm). All readers correctly identified 97.7% (42/43) of lesions with malignant or elevated risk pathology. CONCLUSION An abbreviated MBI protocol (MLO images only) maintained high accuracy in lesion detection and localization.
Collapse
Affiliation(s)
- Santo Maimone
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| | - Andrey P Morozov
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| | - Haley P Letter
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| | | | | | - Zhuo Li
- Mayo Clinic Florida, Department of Biostatistics, Jacksonville, FL, USA
| | - Robert W Maxwell
- Mayo Clinic Florida, Department of Radiology, Jacksonville, FL, USA
| |
Collapse
|
15
|
Breast Cancer Screening Modalities, Recommendations, and Novel Imaging Techniques. Surg Clin North Am 2022; 103:63-82. [DOI: 10.1016/j.suc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Performance of abbreviated protocols versus unenhanced MRI in detecting occult breast lesions of mammography in patients with dense breasts. Sci Rep 2022; 12:13660. [PMID: 35953551 PMCID: PMC9372172 DOI: 10.1038/s41598-022-17945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
To assess the diagnostic ability of abbreviated protocols of MRI (AP-MRI) compared with unenhanced MRI (UE-MRI) in mammographically occult cancers in patients with dense breast tissue. The retrospective analysis consisted of 102 patients without positive findings on mammography who received preoperative MRI full diagnostic protocols (FDP) between January 2015 and December 2018. Two breast radiologists read the UE, AP, and FDP. The interpretation times were recorded. The comparisons of the sensitivity, specificity and area under the curve of each MRI protocol, and the sensitivity of these protocols in each subgroup of different size tumors used the Chi-square test. The paired sample t-test was used for evaluating the difference of reading time of the three protocols. Among 102 women, there were 68 cancers and two benign lesions in 64 patients and 38 patients had benign or negative findings. Both readers found the sensitivity and specificity of AP and UE-MRI were similar (p > 0.05), whereas compared with FDP, UE had lower sensitivity (Reader 1/Reader 2: p = 0.023, 0.004). For different lesion size groups, one of the readers found that AP and FDP had higher sensitivities than UE-MRI for detecting the lesions ≤ 10 mm in diameter (p = 0.041, p = 0.023). Compared with FDP, the average reading time of UE-MRI and AP was remarkably reduced (p < 0.001). AP-MRI had more advantages than UE-MRI to detect mammographically occult cancers, especially for breast tumors ≤ 10 mm in diameter.
Collapse
|
17
|
Jones LI, Marshall A, Elangovan P, Geach R, McKeown-Keegan S, Vinnicombe S, Harding SA, Taylor-Phillips S, Halling-Brown M, Foy C, O’Flynn E, Ghiasvand H, Hulme C, Dunn JA. Evaluating the effectiveness of abbreviated breast MRI (abMRI) interpretation training for mammogram readers: a multi-centre study assessing diagnostic performance, using an enriched dataset. Breast Cancer Res 2022; 24:55. [PMID: 35907862 PMCID: PMC9338668 DOI: 10.1186/s13058-022-01549-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Abbreviated breast MRI (abMRI) is being introduced in breast screening trials and clinical practice, particularly for women with dense breasts. Upscaling abMRI provision requires the workforce of mammogram readers to learn to effectively interpret abMRI. The purpose of this study was to examine the diagnostic accuracy of mammogram readers to interpret abMRI after a single day of standardised small-group training and to compare diagnostic performance of mammogram readers experienced in full-protocol breast MRI (fpMRI) interpretation (Group 1) with that of those without fpMRI interpretation experience (Group 2). METHODS Mammogram readers were recruited from six NHS Breast Screening Programme sites. Small-group hands-on workstation training was provided, with subsequent prospective, independent, blinded interpretation of an enriched dataset with known outcome. A simplified form of abMRI (first post-contrast subtracted images (FAST MRI), displayed as maximum-intensity projection (MIP) and subtracted slice stack) was used. Per-breast and per-lesion diagnostic accuracy analysis was undertaken, with comparison across groups, and double-reading simulation of a consecutive screening subset. RESULTS 37 readers (Group 1: 17, Group 2: 20) completed the reading task of 125 scans (250 breasts) (total = 9250 reads). Overall sensitivity was 86% (95% confidence interval (CI) 84-87%; 1776/2072) and specificity 86% (95%CI 85-86%; 6140/7178). Group 1 showed significantly higher sensitivity (843/952; 89%; 95%CI 86-91%) and higher specificity (2957/3298; 90%; 95%CI 89-91%) than Group 2 (sensitivity = 83%; 95%CI 81-85% (933/1120) p < 0.0001; specificity = 82%; 95%CI 81-83% (3183/3880) p < 0.0001). Inter-reader agreement was higher for Group 1 (kappa = 0.73; 95%CI 0.68-0.79) than for Group 2 (kappa = 0.51; 95%CI 0.45-0.56). Specificity improved for Group 2, from the first 55 cases (81%) to the remaining 70 (83%) (p = 0.02) but not for Group 1 (90-89% p = 0.44), whereas sensitivity remained consistent for both Group 1 (88-89%) and Group 2 (83-84%). CONCLUSIONS Single-day abMRI interpretation training for mammogram readers achieved an overall diagnostic performance within benchmarks published for fpMRI but was insufficient for diagnostic accuracy of mammogram readers new to breast MRI to match that of experienced fpMRI readers. Novice MRI reader performance improved during the reading task, suggesting that additional training could further narrow this performance gap.
Collapse
Affiliation(s)
- Lyn I. Jones
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | - Andrea Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL UK
| | - Premkumar Elangovan
- Scientific Computing, Royal Surrey County Hospital NHS Foundation Trust, Guildford, GU2 7XX UK
| | - Rebecca Geach
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | - Sadie McKeown-Keegan
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | - Sarah Vinnicombe
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, GL53 7AS UK
| | - Sam A. Harding
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB UK
| | | | - Mark Halling-Brown
- Scientific Computing, Royal Surrey County Hospital NHS Foundation Trust, Guildford, GU2 7XX UK
| | - Christopher Foy
- Research Design Service South West Gloucester Office, National Institute for Health Research (NIHR) Leadon House, Gloucestershire Royal Hospital, Gloucester, GL1 3NN UK
| | - Elizabeth O’Flynn
- St George’s University Hospitals Foundation Trust, London, SW17 0QT UK
| | - Hesam Ghiasvand
- Institute of Health Research, University of Exeter Medical School, Exeter, EX1 2LU UK
| | - Claire Hulme
- Institute of Health Research, University of Exeter Medical School, Exeter, EX1 2LU UK
| | - Janet A. Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
18
|
Examining the Effectiveness of Supplementary Imaging Modalities for Breast Cancer Screening in Women with Dense Breasts: A Systematic Review and Meta-analysis. Eur J Radiol 2022; 154:110416. [DOI: 10.1016/j.ejrad.2022.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 11/15/2022]
|
19
|
Bahl M. Screening MRI in Women at Intermediate Breast Cancer Risk: An Update of the Recent Literature. JOURNAL OF BREAST IMAGING 2022; 4:231-240. [PMID: 35783682 PMCID: PMC9233194 DOI: 10.1093/jbi/wbac021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 11/13/2022]
Abstract
Guidelines issued by the American Cancer Society (ACS) in 2007 recommend neither for nor against screening MRI in women at intermediate breast cancer risk (15%-20%), including those with dense breast tissue, a history of lobular neoplasia or atypical ductal hyperplasia (ADH), or a prior breast cancer, because of scarce supporting evidence about the utility of MRI in these specific patient populations. However, since the issuance of the ACS guidelines in 2007, multiple investigations have found that women at intermediate risk may be suitable candidates for screening MRI, given the high detection rates of early-stage cancers and acceptable false-positive rates. For women with dense breast tissue, the Dense Tissue and Early Breast Neoplasm Screening trial reported that the incremental cancer detection rate (CDR) by MRI exceeded 16 cancers per 1000 examinations but decreased in the second round of screening; this decrease in CDR, however, occurred alongside a marked decrease in the false-positive rate. For women with lobular neoplasia or ADH, single-institution retrospective analyses have shown CDRs mostly ranging from 11 to 16 cancers per 1000 MRI examinations, with women with lobular carcinoma in situ benefitting more than women with atypical lobular hyperplasia or ADH. For patients with a prior breast cancer, the cancer yield by MRI varies widely but mostly ranges from 8 to 20 cancers per 1000 examinations, with certain subpopulations more likely to benefit, such as those with dense breasts. This article reviews and summarizes more recent studies on MRI screening of intermediate-risk women.
Collapse
Affiliation(s)
- Manisha Bahl
- Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| |
Collapse
|
20
|
Al Ewaidat H, Ayasrah M. A Concise Review on the Utilization of Abbreviated Protocol Breast MRI over Full Diagnostic Protocol in Breast Cancer Detection. Int J Biomed Imaging 2022; 2022:8705531. [PMID: 35528224 PMCID: PMC9071885 DOI: 10.1155/2022/8705531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Breast MRI possesses high sensitivity for detecting breast cancer among the current clinical modalities and is an indispensable imaging practice. Breast MRI comprises diffusion-weighted imaging, ultrafast, and T2 weighted and T1 weighted CE (contrast-enhanced) imaging that may be utilized for improving the characterization of the lesions. This multimodal evaluation of breast lesions enables outstanding discrimination between the malignant and benign and malignant lesions. The expanding indications of breast MRI confirm the far superiority of MRI in preoperative staging, especially in the estimation of tumour size and identifying tumour foci in the contralateral and ipsilateral breast. Recent studies depicted that experts can meritoriously utilize this tool for improving breast cancer surgery despite their existence of no significant long term outcomes. For managing the, directly and indirectly, associated screening cost, abbreviated protocols are found to be more beneficial. Further, in some of the patients who were treated with neoadjuvant chemotherapy, breast MRI is utilized for documenting response. It is therefore essential to realise that oncological screening must be easily available, cost-effective, and time-consuming. Earlier detection of this short sequence protocol leads to prior and early breast cancer disease in high risky female populations like women with dense breasts, prehistoric evidence, etc. This proper utilization of AP reduces unnecessary mastectomies. Hence, this review focused on the explorative information for strongly suggesting the benefits of AP breast MRI compared to full diagnostic protocol MRI.
Collapse
Affiliation(s)
- Haytham Al Ewaidat
- Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Jordan
| | - Mohammad Ayasrah
- Jordan University of Science and Technology, Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Jordan
| |
Collapse
|
21
|
Wang J, Greuter MJW, Vermeulen KM, Brokken FB, Dorrius MD, Lu W, de Bock GH. Cost-effectiveness of abbreviated-protocol MRI screening for women with mammographically dense breasts in a national breast cancer screening program. Breast 2021; 61:58-65. [PMID: 34915447 PMCID: PMC8683595 DOI: 10.1016/j.breast.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Magnetic resonance imaging (MRI) has shown the potential to improve the screening effectiveness among women with dense breasts. The introduction of fast abbreviated protocols (AP) makes MRI more feasible to be used in a general population. We aimed to investigate the cost-effectiveness of AP-MRI in women with dense breasts (heterogeneously/extremely dense) in a population-based screening program. Methods A previously validated model (SiMRiSc) was applied, with parameters updated for women with dense breasts. Breast density was assumed to decrease with increased age. The base scenarios included six biennial AP-MRI strategies, with biennial mammography from age 50–74 as reference. Fourteen alternative scenarios were performed by varying screening interval (triennial and quadrennial) and by applying a combined strategy of mammography and AP-MRI. A 3% discount rate for both costs and life years gained (LYG) was applied. Model robustness was evaluated using univariate and probabilistic sensitivity analyses. Results The six biennial AP-MRI strategies ranged from 132 to 562 LYG per 10,000 women, where more frequent application of AP-MRI was related to higher LYG. The optimal strategy was biennial AP-MRI screening from age 50–65 for only women with extremely dense breasts, producing an incremental cost-effectiveness ratio of € 18,201/LYG. At a threshold of € 20,000/LYG, the probability that the optimal strategy was cost-effective was 79%. Conclusion Population-based biennial breast cancer screening with AP-MRI from age 50–65 for women with extremely dense breasts might be a cost-effective alternative to mammography, but is not an option for women with heterogeneously dense breasts. AP-MRI can be cost-effective for screening women with extremely dense breast. The more frequent the use of AP-MRI, the more life years will be gained. Biennial AP-MRI for women with extremely dense breast up to age 65 is optimal.
Collapse
Affiliation(s)
- Jing Wang
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands.
| | - Marcel J W Greuter
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands.
| | - Karin M Vermeulen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands.
| | - Frank B Brokken
- University of Groningen, Department of Computing Science, Groningen, the Netherlands.
| | - Monique D Dorrius
- University of Groningen, University Medical Center Groningen, Department of Radiology, Groningen, the Netherlands.
| | - Wenli Lu
- Department of Epidemiology and Health Statistics, Tianjin Medical University, Tianjin, China.
| | - Geertruida H de Bock
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands.
| |
Collapse
|
22
|
Jones LI, Taylor-Phillips S, Geach R, Harding SA, Marshall A, McKeown-Keegan S, Dunn JA. Re: The potential of abbreviated breast MRI (FAST MRI) as a tool for breast cancer screening: a systematic review and meta-analysis. A reply. Clin Radiol 2021; 77:73-75. [PMID: 34848027 DOI: 10.1016/j.crad.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/03/2022]
Affiliation(s)
- L I Jones
- North Bristol NHS Trust, Bristol, UK.
| | | | - R Geach
- North Bristol NHS Trust, Bristol, UK
| | | | - A Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | | | - J A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Weinstein SP, Slanetz PJ, Lewin AA, Battaglia T, Chagpar AB, Dayaratna S, Dibble EH, Goel MS, Hayward JH, Kubicky CD, Le-Petross HT, Newell MS, Sanford MF, Scheel JR, Vincoff NS, Yao K, Moy L. ACR Appropriateness Criteria® Supplemental Breast Cancer Screening Based on Breast Density. J Am Coll Radiol 2021; 18:S456-S473. [PMID: 34794600 DOI: 10.1016/j.jacr.2021.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022]
Abstract
Mammography remains the only validated screening tool for breast cancer, however, there are limitations to mammography. One of the limitations of mammography is the variable sensitivity based on breast density. Supplemental screening may be considered based on the patient's risk level and breast density. For average-risk women with nondense breasts, the sensitivity of digital breast tomosynthesis (DBT) screening is high; additional supplemental screening is not warranted in this population. For average-risk women with dense breasts, given the decreased sensitivity of mammography/DBT, this population may benefit from additional supplemental screening with contrast-enhanced mammography, screening ultrasound (US), breast MRI, or abbreviated breast MRI. In intermediate-risk women, there is emerging evidence suggesting that women in this population may benefit from breast MRI or abbreviated breast MRI. In intermediate-risk women with dense breasts, given the decreased sensitivity of mammography/DBT, this population may benefit from additional supplemental screening with contrast-enhancedmammography or screening US. There is strong evidence supporting screening high-risk women with breast MRI regardless of breast density. Contrast-enhanced mammography, whole breast screening US, or abbreviated breast MRI may be also considered. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
- Susan P Weinstein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Priscilla J Slanetz
- Panel Chair, Boston University School of Medicine, Boston, Massachusetts; and President, Massachusetts Radiological Society
| | - Alana A Lewin
- Panel Vice-Chair, New York University School of Medicine, New York, New York
| | - Tracy Battaglia
- Director, Womens Health Unit, Associate Director, Belkin Breast Health Center, Boston Medical Center and Boston University School of Medicine and Public Health, Boston, Massachusetts; and Chair, National Navigation Roundtable
| | - Anees B Chagpar
- Yale School of Medicine, New Haven, Connecticut; Society of Surgical Oncology
| | - Sandra Dayaratna
- Thomas Jefferson University Hospital, Robbinsville, New Jersey; American College of Obstetricians and Gynecologists
| | | | - Mita Sanghavi Goel
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois; American College of Physicians
| | | | | | - Huong T Le-Petross
- The University of Texas MD Anderson Cancer Center, Houston, Texas; and Breast Imaging Lead in Prevention, Breast Committee, DI Committee of the Alliance
| | - Mary S Newell
- Emory University Hospital, Atlanta, Georgia; Governor, ABR; and Board Member, SBI
| | | | - John R Scheel
- Fellowship Director, University of Washington, Seattle, Washington
| | - Nina S Vincoff
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Katherine Yao
- NorthShore University HealthSystem, Evanston, Illinois; Vice Chair, National Accreditation Program for Breast Centers; and American College of Surgeons
| | - Linda Moy
- Specialty Chair, NYU Clinical Cancer Center, New York, New York; Chair, ACR NMD Registry; Senior Deputy Editor, Radiology; and Advisory Board, iCAD and Lunit
| |
Collapse
|
24
|
den Dekker BM, Bakker MF, de Lange SV, Veldhuis WB, van Diest PJ, Duvivier KM, Lobbes MBI, Loo CE, Mann RM, Monninkhof EM, Veltman J, Pijnappel RM, van Gils CH. Reducing False-Positive Screening MRI Rate in Women with Extremely Dense Breasts Using Prediction Models Based on Data from the DENSE Trial. Radiology 2021; 301:283-292. [PMID: 34402665 DOI: 10.1148/radiol.2021210325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background High breast density increases breast cancer risk and lowers mammographic sensitivity. Supplemental MRI screening improves cancer detection but increases the number of false-positive screenings. Thus, methods to distinguish true-positive MRI screening results from false-positive ones are needed. Purpose To build prediction models based on clinical characteristics and MRI findings to reduce the rate of false-positive screening MRI findings in women with extremely dense breasts. Materials and Methods Clinical characteristics and MRI findings in Dutch breast cancer screening participants (age range, 50-75 years) with positive first-round MRI screening results (Breast Imaging Reporting and Data System 3, 4, or 5) after a normal screening mammography with extremely dense breasts (Volpara density category 4) were prospectively collected within the randomized controlled Dense Tissue and Early Breast Neoplasm Screening (DENSE) trial from December 2011 through November 2015. In this secondary analysis, prediction models were built using multivariable logistic regression analysis to distinguish true-positive MRI screening findings from false-positive ones. Results Among 454 women (median age, 52 years; interquartile range, 50-57 years) with a positive MRI result in a first supplemental MRI screening round, 79 were diagnosed with breast cancer (true-positive findings), and 375 had false-positive MRI results. The full prediction model (area under the receiver operating characteristics curve [AUC], 0.88; 95% CI: 0.84, 0.92), based on all collected clinical characteristics and MRI findings, could have prevented 45.5% (95% CI: 39.6, 51.5) of false-positive recalls and 21.3% (95% CI: 15.7, 28.3) of benign biopsies without missing any cancers. The model solely based on readily available MRI findings and age had a comparable performance (AUC, 0.84; 95% CI: 0.79, 0.88; P = .15) and could have prevented 35.5% (95% CI: 30.4, 41.1) of false-positive MRI screening results and 13.0% (95% CI: 8.8, 18.6) of benign biopsies. Conclusion Prediction models based on clinical characteristics and MRI findings may be useful to reduce the false-positive first-round screening MRI rate and benign biopsy rate in women with extremely dense breasts. Clinical trial registration no. NCT01315015 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Imbriaco in this issue.
Collapse
Affiliation(s)
- Bianca M den Dekker
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Marije F Bakker
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Stéphanie V de Lange
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Wouter B Veldhuis
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Paul J van Diest
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Katya M Duvivier
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Marc B I Lobbes
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Claudette E Loo
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Ritse M Mann
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Evelyn M Monninkhof
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Jeroen Veltman
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Ruud M Pijnappel
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | - Carla H van Gils
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| | -
- From the Department of Radiology (B.M.d.D., S.V.d.L., W.B.V., R.M.P.), Julius Center for Health Sciences and Primary Care (M.F.B., S.V.d.L., E.M.M., C.H.v.G.), and Department of Pathology (P.J.v.D.), University Medical Center Utrecht, Utrecht University, PO Box 85500, 3508 GA Utrecht, the Netherlands; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (K.M.D.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and GROW School for Oncology and Developmental Biology, Maastricht University, and Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen, the Netherlands (M.B.I.L.); Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (C.E.L.); Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands (R.M.M.); Department of Radiology, Ziekenhuisgroep Twente, Almelo, the Netherlands (J.V.); and Dutch Expert Center for Screening, Nijmegen, the Netherlands (R.M.P.)
| |
Collapse
|
25
|
Samreen N, Mercado C, Heacock L, Chacko C, Partridge SC, Chhor C. Screening Breast MRI Primer: Indications, Current Protocols, and Emerging Techniques. JOURNAL OF BREAST IMAGING 2021; 3:387-398. [PMID: 38424773 DOI: 10.1093/jbi/wbaa116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 03/02/2024]
Abstract
Breast dynamic contrast-enhanced MRI (DCE-MRI) is the most sensitive imaging modality for the detection of breast cancer. Screening MRI is currently performed predominantly in patients at high risk for breast cancer, but it could be of benefit in patients at intermediate risk for breast cancer and patients with dense breasts. Decreasing scan time and image interpretation time could increase cost-effectiveness, making screening MRI accessible to a larger group of patients. Abbreviated breast MRI (Ab-MRI) reduces scan time by decreasing the number of sequences obtained, but as multiple delayed contrast enhanced sequences are not obtained, no kinetic information is available. Ultrafast techniques rapidly acquire multiple sequences during the first minute of gadolinium contrast injection and provide information about both lesion morphology and vascular kinetics. Diffusion-weighted imaging is a noncontrast MRI technique with the potential to detect mammographically occult cancers. This review article aims to discuss the current indications of breast MRI as a screening tool, examine the standard breast DCE-MRI technique, and explore alternate screening MRI protocols, including Ab-MRI, ultrafast MRI, and noncontrast diffusion-weighted MRI, which can decrease scan time and interpretation time.
Collapse
Affiliation(s)
- Naziya Samreen
- New York University, Department of Radiology, Garden City, NY, USA
| | - Cecilia Mercado
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| | - Laura Heacock
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| | - Celin Chacko
- New York University, Department of Radiology, Garden City, NY, USA
| | | | - Chloe Chhor
- NYU School of Medicine, Department of Radiology, New York, NY, USA
| |
Collapse
|
26
|
Seitzman RL, Pushkin J, Berg WA. Effect of an educational intervention on women's healthcare provider knowledge gaps about breast density, breast cancer risk, and screening. Menopause 2021; 28:909-917. [PMID: 33906202 DOI: 10.1097/gme.0000000000001780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We sought to assess the effect of an educational intervention, based on DenseBreast-info.org website content, on women's healthcare provider knowledge of breast density, its risk and screening implications, and comfort level discussing these topics with patients. METHODS US-based women's healthcare providers participated in a web-based pretest/posttest study from May 14, 2019 to September 30, 2019. Pretest included demographics; comfort/knowledge discussing breast density impact on risk and screening; and educational material. Posttest contained the same knowledge and comfort questions. We assessed mean pretest/posttest score and comfort level differences (paired t tests) and pretest/posttest knowledge gap differences (McNemar test). We evaluated associations of baseline characteristics with pretest score and score improvement using multiple linear regression, and associations with knowledge gaps using logistic regression. RESULTS Of 177 providers analyzed, 74.0% (131/177) were physicians and 71.8% (127/177) practiced obstetrics/gynecology. Average test score increased from 40.9% (5.7/14) responses correct pretest to 72.1% (10.1/14) posttest (P < 0.001). Pretest, 56.5% (100/177) knew women with extremely dense breasts have four-to-six-fold greater breast cancer risk than those with fatty breasts; 29.4% (52/177) knew risk increases with increasing glandular tissue; only 5.6% (10/177) knew 3D/tomosynthesis does not improve cancer detection in extremely dense breasts over 2D mammography; and 70.6% (125/177) would consider supplemental ultrasound after mammography in an average-risk 50-year old with dense breasts. Postintervention, these knowledge gaps resolved or reduced (all P < 0.005) and comfort in discussing breast density implications increased (all P < 0.001). CONCLUSIONS Important knowledge gaps about implications of breast density exist among women's healthcare providers, which can be effectively addressed with web-based education.
Collapse
Affiliation(s)
| | | | - Wendie A Berg
- DenseBreast-info, Inc., Deer Park, NY
- Department of Radiology, University of Pittsburgh School of Medicine, Magee-Womens Hospital of UPMC, Pittsburgh, PA
| |
Collapse
|
27
|
Kwon MR, Choi JS, Won H, Ko EY, Ko ES, Park KW, Han BK. Breast Cancer Screening with Abbreviated Breast MRI: 3-year Outcome Analysis. Radiology 2021; 299:73-83. [PMID: 33620293 DOI: 10.1148/radiol.2021202927] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Data are limited regarding the performance of abbreviated screening breast MRI during consecutive years and the characteristics of breast cancers missed and detected with it. Purpose To assess the longitudinal diagnostic performance of abbreviated screening MRI and to determine whether the screening outcomes of abbreviated MRI differed between yearly time periods for 3 consecutive years. Materials and Methods This retrospective study included 1975 consecutive women who underwent abbreviated screening MRI between September 2015 and August 2018. Breast Imaging Reporting and Data System (BI-RADS) categories 3-5 defined positive results, and BI-RADS categories 1-2 defined negative results. Cancer detection rate (CDR), sensitivity, specificity, positive predictive value (PPV), abnormal interpretation rate (AIR), and interval cancer rate were assessed annually. Yearly performance measures were compared with the Fisher exact test by using the permutation method. Clinical-pathologic and imaging characteristics of the missed and detected cancers were compared by using the Fisher exact test and the Wilcoxon rank sum test. Results A total of 1975 women (median age, 49 years; interquartile range, 44-56 years) underwent 3037 abbreviated MRI examinations over 3 years. CDR (year 1 to year 3, 6.9-10.7 per 1000 examinations), positive predictive value for recall (9.7% [six of 62] to 15.6% [12 of 77]), positive predictive value for biopsy (31.6% [six of 19] to 63.2% [12 of 19]), sensitivity (75.0% [six of eight] to 80.0% [12 of 15]), and specificity (93.5% [807 of 863] to 94.1% [1041 of 1106]) were highest in year 3, and AIR (7.1% [62 of 871] to 6.9% [77 of 1121]) was lowest in year 3. However, all outcome measures did not differ statistically between years 1, 2, and 3 (all P > .05). The interval cancer rate was 0.66 per 1000 examinations (two of 3037). Thirty-eight breast cancers were identified in 36 women; 29 were detected with abbreviated MRI, but nine were missed. Of these, seven were detected with other imaging modalities after negative results at the last screening MRI examination, and two were interval cancers. All missed cancers were node-negative early-stage invasive cancers and were smaller (median size, 0.8 cm vs 1.2 cm; P = .01) than detected cancers. Conclusion Screening outcome measures of abbreviated MRI were sustained without significant differences between 3 consecutive years. All cancers missed at abbreviated MRI were node-negative invasive cancers and tended to be smaller than detected cancers. © RSNA, 2021 See also the editorial by Lee in this issue. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Mi-Ri Kwon
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Ji Soo Choi
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Hojeong Won
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Eun Young Ko
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Eun Sook Ko
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Ko Woon Park
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| | - Boo-Kyung Han
- From the Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea (M.R.K., J.S.C., E.Y.K., E.S.K., K.W.P., B.K.H.); Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea (M.R.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.S.C.); and Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea (H.W.)
| |
Collapse
|
28
|
Baxter GC, Selamoglu A, Mackay JW, Bond S, Gray E, Gilbert FJ. A meta-analysis comparing the diagnostic performance of abbreviated MRI and a full diagnostic protocol in breast cancer. Clin Radiol 2021; 76:154.e23-154.e32. [PMID: 33032820 DOI: 10.1016/j.crad.2020.08.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
AIM To undertake a meta-analysis of the diagnostic performance of abbreviated (ABB) magnetic resonance imaging (MRI) and full diagnostic protocol MRI (FDP-MRI) in breast cancer. MATERIALS AND METHODS This meta-analysis was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guidelines. The PubMed and EMBASE databases were searched through August 2019 for studies comparing the diagnostic performance of ABB-MRI and FDP-MRI in the breast. Studies were reviewed by two authors independently according to eligibility and exclusion criteria and split into two subgroups (screening population studies and studies using cohorts enriched with known cancers) to avoid bias. Quality assessment and bias for diagnostic accuracy was determined with Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The diagnostic accuracy for each subgroup was pooled using a bivariate random effects model and summary receiver operating characteristic (sROC) curves produced. Sensitivities and specificities were compared using a paired t-test. RESULTS Five screening (62/2,588 cancers/patients) and eight enriched cohort (540/1,432 cancers/patients) studies were included in the meta-analysis. QUADAS-2 assessment showed a low risk of bias in most studies. The pooled sensitivity/specificity/area under the receiver operating characteristic curve (AUC) for screening studies was 0.90/0.92/0.94 for ABB-MRI and 0.92/0.95/0.97 for FDP-MRI. The pooled sensitivity/specificity/AUC for enriched cohort studies was 0.93/0.83/0.94 for ABB-MRI and 0.93/0.84/0.95 for FDP-MRI. There was no significant difference in sensitivity or specificity using ABB-MRI or FDP-MRI (p=0.18 and 0.27, p=0.18 and 0.93, respectively). CONCLUSION The diagnostic performances of the ABB-MRI and FDP-MRI protocols used in either screening or enriched cohorts were comparable. There was a large variation in patient population, study methodology, and abbreviated protocols reported.
Collapse
Affiliation(s)
- G C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - A Selamoglu
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - J W Mackay
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - S Bond
- National Institute for Health Research, Cambridge Clinical Trials Unit, Cambridge, UK
| | - E Gray
- University of Edinburgh, Edinburgh, UK
| | - F J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; National Institute for Health Research, Cambridge Clinical Trials Unit, Cambridge, UK.
| |
Collapse
|
29
|
Hernández ML, Osorio S, Florez K, Ospino A, Díaz GM. Abbreviated magnetic resonance imaging in breast cancer: A systematic review of literature. Eur J Radiol Open 2020; 8:100307. [PMID: 33364260 PMCID: PMC7750142 DOI: 10.1016/j.ejro.2020.100307] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND : magnetic resonance imaging (MRI) has been increasingly used to study breast cancer for screening high-risk cases, pre-operative staging, and problem-solving because of its high sensitivity. However, its cost-effectiveness is still debated. Thus, the concept of abbreviated MRI (ABB-MRI) protocols was proposed as a possible solution for reducing MRI costs. PURPOSE : to investigate the role of the abbreviated MRI protocols in detecting and staging breast cancer. METHODS : a systematic search of the literature was carried out in the bibliographic databases: Scopus, PubMed, Medline, and Science Direct. RESULTS : forty-one articles were included, which described results of the assessment of fifty-three abbreviated protocols for screening, staging, recurrence assessing, and problem-solving or clarification. CONCLUSIONS : the use of ABB-MRI protocols allows reducing the acquisition and reading times, maintaining a high concordance with the final interpretation, in comparison to a complete protocol. However, larger prospective and multicentre trials are necessary to validate the performance in specific clinical environments.
Collapse
Affiliation(s)
- María Liliana Hernández
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
| | - Santiago Osorio
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
- Especialización en Radiología, Universidad CES, Medellín, Colombia
| | - Katherine Florez
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
- Especialización en Radiología, Universidad CES, Medellín, Colombia
| | - Alejandra Ospino
- Grupo de Investigación del Instituto de Alta Tecnología Médica (IATM), Ayudas Diagnósticas Sura, Medellín, Colombia
| | - Gloria M. Díaz
- MIRP Lab–Parque i, Instituto Tecnológico Metropolitano (ITM), Medellín, Colombia
| |
Collapse
|
30
|
Liu Z, Li X, Feng B, Li C, Chen Y, Yi L, Li Z, Li R, Long W. MIP image derived from abbreviated breast MRI: potential to reduce unnecessary sub-nipple biopsies during nipple-sparing mastectomy for breast cancer. Eur Radiol 2020; 31:3683-3692. [PMID: 33247343 DOI: 10.1007/s00330-020-07550-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the value of a maximum-intensity projection (MIP) image derived from abbreviated breast MRI for excluding occult nipple-areolar complex (NAC) involvement in patients with breast cancer. METHODS This prospective study included breast cancer patients with clinically normal NACs between April 2016 and May 2019. Abbreviated breast MRI was performed, and an MIP image was generated for each patient. MIP images were examined for the following features: asymmetric nipple enhancement, tumor-nipple distance (TND), tumor diameter, lesion type, location, and multifocality. Independent predictive MIP features for occult NAC involvement were identified by univariable and multivariable logistic regression analyses. Models based on independent predictive MIP features were developed, and their diagnostic performances were evaluated using ROC analysis. The utility of an MIP image for excluding occult NAC involvement was assessed by considering NPVs across patient subgroups. RESULTS Eight hundred forty-three patients (67 NAC-positive and 776 NAC-negative) were enrolled. On MIP images, asymmetric nipple enhancement (odds ratio, 6.098; p < 0.001) and TND (odds ratio, 0.564; p = 0.003) were independent predictors of occult NAC involvement. A parallel test model of "asymmetric nipple enhancement or TND ≤ 15 mm" yielded the highest AUC value (0.838) among prediction models. The NPV of MIP images for excluding occult NAC involvement was 99.5%, which was applicable across various patient subgroups. CONCLUSIONS A single MIP image derived from abbreviated breast MRI has utility for excluding occult NAC involvement in breast cancer patients and reducing the number of unnecessary sub-nipple biopsies in nipple-sparing mastectomy. KEY POINTS • On MIP images derived from abbreviated breast MRI, asymmetric nipple enhancement and tumor-nipple distance were independent predictors for occult nipple involvement in patients with breast cancer. • Negative findings on MIP image can help select patients at minimal risk of occult nipple involvement, for whom unnecessary intraoperative sub-nipple biopsies in nipple-sparing mastectomy can be omitted.
Collapse
Affiliation(s)
- Zhuangsheng Liu
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, China
| | - Xiaoping Li
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, China
| | - Bao Feng
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, China
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Changlin Li
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Yehang Chen
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, 541004, China
| | - Lilei Yi
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, China
| | - Zhiwei Li
- Department of Radiology, Sanya Central Hospital, Sanya, 572000, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, China
| | - Wansheng Long
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No. 23 Haibang Street, Jiangmen, 529000, China.
| |
Collapse
|
31
|
Kim ES, Cho N, Kim SY, Kwon BR, Yi A, Ha SM, Lee SH, Chang JM, Moon WK. Comparison of Abbreviated MRI and Full Diagnostic MRI in Distinguishing between Benign and Malignant Lesions Detected by Breast MRI: A Multireader Study. Korean J Radiol 2020; 22:297-307. [PMID: 33289355 PMCID: PMC7909852 DOI: 10.3348/kjr.2020.0311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To compare the performance of simulated abbreviated breast MRI (AB-MRI) and full diagnostic (FD)-MRI in distinguishing between benign and malignant lesions detected by MRI and investigate the features of discrepant lesions of the two protocols. Materials and Methods An AB-MRI set with single first postcontrast images was retrospectively obtained from an FD-MRI cohort of 111 lesions (34 malignant, 77 benign) detected by contralateral breast MRI in 111 women (mean age, 49.8. ± 9.8; range, 28–75 years) with recently diagnosed breast cancer. Five blinded readers independently classified the likelihood of malignancy using Breast Imaging Reporting and Data System assessments. McNemar tests and area under the receiver operating characteristic curve (AUC) analyses were performed. The imaging and pathologic features of the discrepant lesions of the two protocols were analyzed. Results The sensitivity of AB-MRI for lesion characterization tended to be lower than that of FD-MRI for all readers (58.8–82.4% vs. 79.4–100%), although the findings of only two readers were significantly different (p < 0.05). The specificity of AB-MRI for lesion characterization was higher than that of FD-MRI for 80% of readers (39.0–74.0% vs. 19.5–45.5%, p ≤ 0.001). The AUC of AB-MRI was comparable to that of FD-MRI for all readers (p > 0.05). Fifteen percent (5/34) of the cancers were false-negatives on AB-MRI. More suspicious margins or internal enhancement on the delayed phase images were related to the discrepancies. Conclusion The overall performance of AB-MRI was similar to that of FD-MRI in distinguishing between benign and malignant lesions. AB-MRI showed lower sensitivity and higher specificity than FD-MRI, as 15% of the cancers were misclassified compared to FD-MRI.
Collapse
Affiliation(s)
- Eun Sil Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| | - Soo Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Bo Ra Kwon
- Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Ann Yi
- Department of Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Su Min Ha
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Su Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
32
|
Gao Y, Heller SL. Abbreviated and Ultrafast Breast MRI in Clinical Practice. Radiographics 2020; 40:1507-1527. [DOI: 10.1148/rg.2020200006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yiming Gao
- From the Department of Radiology, New York University School of Medicine, 160 E 34th St, New York, NY 10016
| | - Samantha L. Heller
- From the Department of Radiology, New York University School of Medicine, 160 E 34th St, New York, NY 10016
| |
Collapse
|
33
|
Geach R, Jones LI, Harding SA, Marshall A, Taylor-Phillips S, McKeown-Keegan S, Dunn JA. The potential utility of abbreviated breast MRI (FAST MRI) as a tool for breast cancer screening: a systematic review and meta-analysis. Clin Radiol 2020; 76:154.e11-154.e22. [PMID: 33010932 DOI: 10.1016/j.crad.2020.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022]
Abstract
AIM To synthesise evidence comparing abbreviated breast magnetic resonance imaging (abMRI) to full-protocol MRI (fpMRI) in breast cancer screening. MATERIALS AND METHODS A systematic search was undertaken in multiple databases. Cohort studies without enrichment, presenting accuracy data of abMRI in screening, for any level of risk (population, moderate, high risk) were included. Level of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE). Meta-analyses (bivariate random effects model) were performed for abMRI, with fpMRI and histology from fpMRI-positive cases as reference standard, and with follow-up to symptomatic detection added to the fpMRI. The review also covers evidence comparing abMRI with mammographic techniques. RESULTS The title and abstract review retrieved 23 articles. Five studies (six articles) were included (2,763 women, 3,251 screening rounds). GRADE assessment of the evidence was very low because the reference standard was interpreted with knowledge of the index test and biopsy was not obtained for all abMRI positives. The overall sensitivity for abMRI, with fpMRI (and histology for fpMRI positives) as reference standard, was 94.8% (95% confidence interval [CI] 85.5-98.2) and specificity as 94.6% (95% CI: 91.5-96.6). Three studies (1,450 women, 1,613 screening rounds) presented follow-up data, enabling comparison between abMRI and fpMRI. Sensitivities and specificities for abMRI did not differ significantly from those for fpMRI (p=0.83 and p=0.37, respectively). CONCLUSION A very low level of evidence suggests abMRI could be accurate for breast cancer screening. Research is required, with follow-up to interval cancer, to determine the effect its use could have on clinical outcome.
Collapse
Affiliation(s)
- R Geach
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK
| | - L I Jones
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK.
| | - S A Harding
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK
| | - A Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK
| | - S Taylor-Phillips
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK
| | - S McKeown-Keegan
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol, BS10 5NB, UK
| | - J A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
34
|
Abstract
OBJECTIVE. Patients with dense breast tissue are seeking supplemental screening because of the limited sensitivity of mammography. Abbreviated protocol (AP) breast MRI is attractive because it offers a higher cancer detection rate, shorter scan time, and lower cost than full MRI. This article explores the issues of balancing the benefits of AP MRI with safety concerns about gadolinium-based contrast agents, lack of standardization of protocols and field strengths, potential decrease in performance metrics, and potential for overdiagnosis. CONCLUSION. Important questions need to be addressed before AP MRI can be used routinely for breast cancer screening. Evidence is lacking from well-designed prospective trials that can confirm the accuracy and efficacy of AP MRI are comparable with those of other breast imaging modalities. Determining which patients benefit most from AP MRI will help shape future screening guidelines.
Collapse
|
35
|
Liu F, Li G, Yang S, Yan W, He G, Lin L. Recognition of Heterogeneous Edges in Multiwavelength Transmission Images Based on the Weighted Constraint Decision Method. APPLIED SPECTROSCOPY 2020; 74:883-893. [PMID: 32073301 DOI: 10.1177/0003702820908951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiwavelength light transmission imaging provides a possibility for early detection of breast cancer. However, due to strong scattering during the transmission process of breast tissue analysis, the transmitted image signal is weak and the image is blurred and this makes heterogeneous edge detection difficult. This paper proposes a method based on the weighted constraint decision (WCD) method to eliminate the erosion and checkerboard effects in image histogram equalization (HE) enhancement and to improve the recognition of heterogeneous edge. Multiwavelength transmission images of phantom are acquired on the designed experimental system and the mask image with high signal-to-noise ratio (SNR) is obtained by frame accumulation and an Otsu thresholding model. Then, during image enhancement the image is divided into low-gray-level (LGL) and high-gray-level (HGL) regions according to the distribution of light intensity in image. And the probability density distribution of gray level in the LGL and HGL regions are redefined respectively according to the WCD method. Finally, the reconstructed image is obtained based on the modified HE. The experimental results show that compared with traditional image enhancement methods, the WCD method proposed in this paper can greatly improve the contrast between heterogeneous region and normal region. Moreover, the correlation between the original image data is maintained to the greatest extent, so that the edge of the heterogeneity can be detected more accurately. In conclusion, the WCD method not only accurately identifies the edge of heterogeneity in multiwavelength transmission images, but it also could improve the clinical application of multiwavelength transmission images in the early detection of breast cancer.
Collapse
Affiliation(s)
- Fulong Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Gang Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Shuqiang Yang
- School of physics and electronic information, Luoyang Normal University, Luoyang, China
| | - Wenjuan Yan
- School of Electronic Information Engineering, Yangtze Normal University, Chongqing, China
| | - Guoquan He
- School of Electronic Information Engineering, Yangtze Normal University, Chongqing, China
| | - Ling Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Khodadadi Yazdi M, Zarrintaj P, Hosseiniamoli H, Mashhadzadeh AH, Saeb MR, Ramsey JD, Ganjali MR, Mozafari M. Zeolites for theranostic applications. J Mater Chem B 2020; 8:5992-6012. [PMID: 32602516 DOI: 10.1039/d0tb00719f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theranostic platforms bring about a revolution in disease management. During recent years, theranostic nanoparticles have been utilized for imaging and therapy simultaneously. Zeolites, because of their porous structure and tunable properties, which can be modified with various materials, can be used as a delivery agent. The porous structure of a zeolite enables it to be loaded and unloaded with various molecules such as therapeutic agents, photosensitizers, biological macromolecules, MRI contrast agents, radiopharmaceuticals, near-infrared (NIR) fluorophores, and microbubbles. Furthermore, theranostic zeolite nanocarriers can be further modified with targeting ligands, which is highly interesting for targeted cancer therapies.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Scoggins ME, Arun BK, Candelaria RP, Dryden MJ, Wei W, Son JB, Ma J, Dogan BE. Should abbreviated breast MRI be compliant with American College of Radiology requirements for MRI accreditation? Magn Reson Imaging 2020; 72:87-94. [PMID: 32622851 DOI: 10.1016/j.mri.2020.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate non-inferiority and diagnostic performance of an American College of Radiology compliant abbreviated MRI protocol (AB-MRI) compared with standard-of-care breast MRI (SOC-BMRI) in patients with increased breast cancer risk. MATERIAL AND METHODS Women with increased lifetime breast cancer risk by American Cancer Society guidelines underwent breast MRI at a single institution between October 2015 and February 2018. AB-MRI was acquired at 3.0 T with T2-weighted extended fast spin echo triple-echo Dixon and pre- and post-contrast 3D dual-echo fast spoiled gradient echo two-point Dixon sequences with an 8-channel breast coil 1-7 days after SOC-BMRI. Three readers independently reviewed AB-MRI and assigned BI-RADS categories for maximum intensity projection images (AB1), dynamic contrast-enhanced (DCE) images (AB2), and DCE and non-contrast T2 and fat-only images (AB3). These scores were compared to those from SOC-BMRI. RESULTS Cancer yield was 14 per 1000 (women-years) in 73 women aged 26-75 years (mean 53.5 years). AB-MRI acquisition times (mean 9.63 min) and table times (mean 15.07 min) were significantly shorter than those of SOC-BMRI (means 19.46 and 36.3 min, respectively) (p < .001). Accuracy, sensitivity, specificity, and positive and negative predictive values were identical for AB3 and SOC-BMRI (93%, 100%, 93%, 16.7%, and 100%, respectively). AB-MRI with AB1 and AB2 had significantly lower specificity (AB1 = 73.6%, AB2 = 77.8%), positive predictive values (AB1 = 5%, AB2 = 5.9%), and accuracy (AB1 = 74%, AB2 = 78%) than those of SOC-BMRI (p = .002 for AB1, p = .01 for AB2). CONCLUSION AB-MRI was acquired significantly faster than SOC-BMRI and its diagnostic performance was non-inferior. Inclusion of T2 and fat-only images was necessary to achieve non-inferiority by multireader evaluation.
Collapse
Affiliation(s)
- Marion E Scoggins
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States of America.
| | - Banu K Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX 77030-4009, United States of America.
| | - Rosalind P Candelaria
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States of America.
| | - Mark J Dryden
- Department of Diagnostic Radiology, Unit 1350, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, United States of America.
| | - Wei Wei
- Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, United States of America.
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1472, Houston, TX 77030-4009, United States of America.
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1472, Houston, TX 77030-4009, United States of America.
| | - Basak E Dogan
- Department of Diagnostic Radiology, UT Southwestern Medical Center, 2201 Inwood Rd, Dallas, TX 75390-8585, United States of America.
| |
Collapse
|
38
|
Lee-Felker S, Joines M, Storer L, Li B, DeBruhl N, Sayre J, Hoyt A. Abbreviated Breast MRI for Estimating Extent of Disease in Newly Diagnosed Breast Cancer. JOURNAL OF BREAST IMAGING 2020; 2:43-49. [PMID: 38424993 DOI: 10.1093/jbi/wbz071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/01/2019] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To evaluate extent of disease estimation of abbreviated protocol (ap) magnetic resonance imaging (MRI) compared with full protocol (fp) MRI in newly diagnosed breast cancer. METHODS In this institutional review board-approved, Health Insurance Portability and Accountability Act-compliant, retrospective study of women with breast cancer who underwent pretreatment fpMRI on a 3 Tesla MRI in 2013, axial fat-saturated pre- and first postcontrast T1, maximum-intensity projection, and subtraction sequences were interpreted independently by three breast radiologists in two sessions, without and with prior imaging, respectively. Agreement was calculated using Cohen's kappa. Interpretations were compared with histology or clinical stability. Diagnostic performances were compared using Bennett's statistic. P < 0.05 was significant. RESULTS Eighty-one women (mean age 56 years, range 32-92 years), 116 lesions, and 95 cancers (mean size 27 mm, range 4-110 mm) were included. Agreement among radiologists for lesion assessment was excellent (0.83). apMRI cancer detection improved with prior imaging (mean sensitivity from 95% to 99%, specificity from 91% to 97%, positive predictive value [PPV] from 92% to 98%, and negative predictive value [NPV] from 95% to 99%) versus fpMRI (sensitivity 98% [93/95], specificity 94% [76/81], PPV 95% [93/98], and NPV 97% [76/78]). apMRI detected all multifocal, multicentric, and contralateral disease seen in 19% (15/81) of women to the same extent as fpMRI. apMRI axillary metastases detection improved with prior imaging (mean sensitivity from 78% to 86%, specificity from 90% to 92%, PPV from 76% to 82%, and NPV from 89% to 94%) versus fpMRI (sensitivity 71% [17/24], specificity 88% [51/58]), PPV 71% [17/24], and NPV 88% [51/58]). CONCLUSION apMRI may be acceptable for women with newly diagnosed cancer.
Collapse
Affiliation(s)
- Stephanie Lee-Felker
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Melissa Joines
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Lindsey Storer
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Bo Li
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - Nanette DeBruhl
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| | - James Sayre
- University of California, Los Angeles, Fielding School of Public Health, Department of Biostatistics, Los Angeles, CA
| | - Anne Hoyt
- David Geffen School of Medicine at the University of California, Los Angeles, Department of Radiological Sciences, Los Angeles, CA
| |
Collapse
|
39
|
Schünemann HJ, Lerda D, Quinn C, Follmann M, Alonso-Coello P, Rossi PG, Lebeau A, Nyström L, Broeders M, Ioannidou-Mouzaka L, Duffy SW, Borisch B, Fitzpatrick P, Hofvind S, Castells X, Giordano L, Canelo-Aybar C, Warman S, Mansel R, Sardanelli F, Parmelli E, Gräwingholt A, Saz-Parkinson Z. Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Ann Intern Med 2020; 172:46-56. [PMID: 31766052 DOI: 10.7326/m19-2125] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DESCRIPTION The European Commission Initiative for Breast Cancer Screening and Diagnosis guidelines (European Breast Guidelines) are coordinated by the European Commission's Joint Research Centre. The target audience for the guidelines includes women, health professionals, and policymakers. METHODS An international guideline panel of 28 multidisciplinary members, including patients, developed questions and corresponding recommendations that were informed by systematic reviews of the evidence conducted between March 2016 and December 2018. GRADE (Grading of Recommendations Assessment, Development and Evaluation) Evidence to Decision frameworks were used to structure the process and minimize the influence of competing interests by enhancing transparency. Questions and recommendations, expressed as strong or conditional, focused on outcomes that matter to women and provided a rating of the certainty of evidence. RECOMMENDATIONS This synopsis of the European Breast Guidelines provides recommendations regarding organized screening programs for women aged 40 to 75 years who are at average risk. The recommendations address digital mammography screening and the addition of hand-held ultrasonography, automated breast ultrasonography, or magnetic resonance imaging compared with mammography alone. The recommendations also discuss the frequency of screening and inform decision making for women at average risk who are recalled for suspicious lesions or who have high breast density.
Collapse
Affiliation(s)
| | - Donata Lerda
- European Commission, Joint Research Centre, Ispra, Italy (D.L., E.P., Z.S.)
| | - Cecily Quinn
- St. Vincent's University Hospital, Dublin, Ireland (C.Q.)
| | | | | | - Paolo Giorgi Rossi
- Azienda Unitá Sanitaria Locale-IRCCS di Reggio Emilia, Reggia Emilia, Italy (P.G.R.)
| | - Annette Lebeau
- Private Group Practice for Pathology, Lübeck, Germany (A.L.)
| | | | | | | | - Stephen W Duffy
- Queen Mary University of London, London, United Kingdom (S.W.D.)
| | | | | | | | - Xavier Castells
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain (X.C.)
| | - Livia Giordano
- CPO-Piedmont - AOU Cittá della Salute e della Scienza, Torino, Italy (L.G.)
| | | | - Sue Warman
- Langford, North Somerset, United Kingdom (S.W.)
| | | | | | - Elena Parmelli
- European Commission, Joint Research Centre, Ispra, Italy (D.L., E.P., Z.S.)
| | | | | | | |
Collapse
|
40
|
Kuhl CK. Abbreviated Magnetic Resonance Imaging (MRI) for Breast Cancer Screening: Rationale, Concept, and Transfer to Clinical Practice. Annu Rev Med 2019; 70:501-519. [PMID: 30691370 DOI: 10.1146/annurev-med-121417-100403] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given the increasing understanding of cancer as a heterogeneous group of diseases, detection methods should offer a sensitivity profile that ensures perfect sensitivity for biologically important cancers while screening out self-limiting pseudocancers. However, mammographic screening is biased toward detection of ductal carcinoma in situ and slowly growing cancers-and thus frequently fails to detect biologically aggressive cancers. This explains the persistently high rates of interval cancers and high rates of breast cancer mortality observed in spite of decades of mammographic screening. Magnetic resonance imaging (MRI), in contrast, has a sensitivity profile that matches clinical needs. Conventional MRI is not suitable for population-wide screening due to high cost, limited tolerability, and lack of availability. We introduced abbreviated MRI in 2014. Abbreviated MRI will change the way MRI is used in clinical medicine. This article describes the rationale to use MRI in general, and abbreviated MRI in particular, for breast cancer screening.
Collapse
Affiliation(s)
- Christiane K Kuhl
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
41
|
Partovi S, Sin D, Lu Z, Sieck L, Marshall H, Pham R, Plecha D. Fast MRI breast cancer screening - Ready for prime time. Clin Imaging 2019; 60:160-168. [PMID: 31927171 DOI: 10.1016/j.clinimag.2019.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The manuscript discusses landmark studies using abbreviated MRI for breast cancer screening. This includes abbreviated dynamic contrast enhanced MRI and diffusion weighted imaging. Our institutional experience with abbreviated MR protocol for breast cancer screening is also described. CONCLUSION Abbreviated MRI protocols were found to demonstrate value for screening of breast cancer. It has been shown that abbreviated protocol MRI provides similar diagnostic sensitivities to full protocol MRI for breast cancer in women with increased lifetime risk. Our institutional abbreviated MRI protocol for breast cancer offers improved time and workflow efficiencies and has the potential to increase the number of breast cancers detected and the detection of pathologically relevant invasive breast cancer at earlier stages.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America.
| | - David Sin
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ziang Lu
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Leah Sieck
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Holly Marshall
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ramya Pham
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Donna Plecha
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
42
|
Bakker MF, de Lange SV, Pijnappel RM, Mann RM, Peeters PHM, Monninkhof EM, Emaus MJ, Loo CE, Bisschops RHC, Lobbes MBI, de Jong MDF, Duvivier KM, Veltman J, Karssemeijer N, de Koning HJ, van Diest PJ, Mali WPTM, van den Bosch MAAJ, Veldhuis WB, van Gils CH. Supplemental MRI Screening for Women with Extremely Dense Breast Tissue. N Engl J Med 2019; 381:2091-2102. [PMID: 31774954 DOI: 10.1056/nejmoa1903986] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extremely dense breast tissue is a risk factor for breast cancer and limits the detection of cancer with mammography. Data are needed on the use of supplemental magnetic resonance imaging (MRI) to improve early detection and reduce interval breast cancers in such patients. METHODS In this multicenter, randomized, controlled trial in the Netherlands, we assigned 40,373 women between the ages of 50 and 75 years with extremely dense breast tissue and normal results on screening mammography to a group that was invited to undergo supplemental MRI or to a group that received mammography screening only. The groups were assigned in a 1:4 ratio, with 8061 in the MRI-invitation group and 32,312 in the mammography-only group. The primary outcome was the between-group difference in the incidence of interval cancers during a 2-year screening period. RESULTS The interval-cancer rate was 2.5 per 1000 screenings in the MRI-invitation group and 5.0 per 1000 screenings in the mammography-only group, for a difference of 2.5 per 1000 screenings (95% confidence interval [CI], 1.0 to 3.7; P<0.001). Of the women who were invited to undergo MRI, 59% accepted the invitation. Of the 20 interval cancers that were diagnosed in the MRI-invitation group, 4 were diagnosed in the women who actually underwent MRI (0.8 per 1000 screenings) and 16 in those who did not accept the invitation (4.9 per 1000 screenings). The MRI cancer-detection rate among the women who actually underwent MRI screening was 16.5 per 1000 screenings (95% CI, 13.3 to 20.5). The positive predictive value was 17.4% (95% CI, 14.2 to 21.2) for recall for additional testing and 26.3% (95% CI, 21.7 to 31.6) for biopsy. The false positive rate was 79.8 per 1000 screenings. Among the women who underwent MRI, 0.1% had either an adverse event or a serious adverse event during or immediately after the screening. CONCLUSIONS The use of supplemental MRI screening in women with extremely dense breast tissue and normal results on mammography resulted in the diagnosis of significantly fewer interval cancers than mammography alone during a 2-year screening period. (Funded by the University Medical Center Utrecht and others; DENSE ClinicalTrials.gov number, NCT01315015.).
Collapse
Affiliation(s)
- Marije F Bakker
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Stéphanie V de Lange
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Ruud M Pijnappel
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Ritse M Mann
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Petra H M Peeters
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Evelyn M Monninkhof
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Marleen J Emaus
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Claudette E Loo
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Robertus H C Bisschops
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Marc B I Lobbes
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Matthijn D F de Jong
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Katya M Duvivier
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Jeroen Veltman
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Nico Karssemeijer
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Harry J de Koning
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Paul J van Diest
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Willem P T M Mali
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Maurice A A J van den Bosch
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Wouter B Veldhuis
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| | - Carla H van Gils
- From the Julius Center for Health Sciences and Primary Care (M.F.B., S.V.L., P.H.M.P., E.M.M., C.H.G.) and the Departments of Radiology (S.V.L., R.M.P., M.J.E., W.P.T.M.M., M.A.A.J.B., W.B.V.) and Pathology (P.J.D.), University Medical Center Utrecht, Utrecht University, Utrecht, the Dutch Expert Center for Screening (R.M.P.) and the Department of Radiology, Radboud University Nijmegen Medical Center (R.M.M., N.K.), Nijmegen, the Department of Radiology, Antoni van Leeuwenhoek Hospital (C.E.L.), and the Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam (K.M.D.), Amsterdam, the Department of Radiology, Albert Schweitzer Hospital, Dordrecht (R.H.C.B.), the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, and the Department of Medical Imaging, Zuyderland Medical Center, Sittard-Geleen (M.B.I.L.), the Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch (M.D.F.J.), the Department of Radiology, Hospital Group Twente, Almelo (J.V.), and the Department of Public Health, Erasmus Medical Center, Rotterdam (H.J.K.) - all in the Netherlands; and the Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London (P.H.M.P.)
| |
Collapse
|
43
|
Jones LI, Geach R, Harding SA, Foy C, Taylor V, Marshall A, Taylor-Phillips S, Dunn JA. Can mammogram readers swiftly and effectively learn to interpret first post-contrast acquisition subtracted (FAST) MRI, a type of abbreviated breast MRI?: a single centre data-interpretation study. Br J Radiol 2019; 92:20190663. [PMID: 31559859 DOI: 10.1259/bjr.20190663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To assess whether NHS breast screening programme (NHSBSP) mammogram readers could effectively interpret first post-contrast acquisition subtracted (FAST) MRI, for intended use in screening for breast cancer. METHODS Eight NHSBSP mammogram readers from a single centre (four who also read breast MRI (Group 1) and four who do not (Group 2)) were given structured FAST MRI reader training (median 4 h: 32 min). They then prospectively interpreted 125 FAST MRIs (250 breasts: 194 normal and 56 cancer) comprising a consecutive series of screening MRIs enriched with additional cancer cases from 2015, providing 2000 interpretations. Readers were blinded to other readers' opinions and to clinical information. Categorisation followed the NHSBSP MRI reporting categorisation, with categories 4 and 5 considered indicative of cancer. Diagnostic accuracy (reference standard: histology or 2 years' follow-up) and agreement between readers were determined. RESULTS The accuracy achieved by Group 2 (847/1000 (85%; 95% confidence interval (CI) 82-87%)) was 5% less than that of Group 1 (898/1000 (90%; 95% CI 88-92)). Good inter-reader agreement was seen between both Group 1 readers (κ = 0.66; 95% CI 0.61-0.71) and Group 2 readers (κ = 0.63; 95% CI 0.58-0.68). The median time taken to interpret each FAST MRI was Group 1: 34 s (range 3-351) and Group 2: 77 s (range 11-321). CONCLUSION Brief structured training enabled multiprofessional mammogram readers to achieve similar accuracy at FAST MRI interpretation to consultant radiologists experienced at breast MRI interpretation. ADVANCES IN KNOWLEDGE FAST MRI could be feasible from a training-the-workforce perspective for screening within NHSBSP.
Collapse
Affiliation(s)
- Lyn I Jones
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol BS10 5NB, UK
| | - Rebecca Geach
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol BS10 5NB, UK
| | - Sam A Harding
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol BS10 5NB, UK
| | - Christopher Foy
- Research Design Service South West Gloucester Office, National Institute for Health Research (NIHR) Leadon House, Gloucestershire Royal Hospital, Gloucester GL1 3NN, UK
| | - Victoria Taylor
- North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury on Trym, Bristol BS10 5NB, UK
| | - Andrea Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry CV4 7AL, UK
| | | | - Janet A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
44
|
Dialani V, Tseng I, Slanetz PJ, Fein-Zachary V, Phillips J, Karimova E, Brook A, Mehta TS. Potential role of abbreviated MRI for breast cancer screening in an academic medical center. Breast J 2019; 25:604-611. [PMID: 31206889 DOI: 10.1111/tbj.13297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022]
Abstract
The purpose is to determine whether an abbreviated MRI protocol (ABMR) is ready to be used for breast cancer screening in an academic practice setting. Two hundred and fifty nine breast MRIs from 1/1/2012 to 6/30/2012 were retrospectively reviewed using ABMR (MIP, Pre-contrastT1, single dynamic post-contrastT1, and subtraction). Five breast radiologists (4-28 year-expr) participated in this reader study performed in two phases: Phase1 - radiologist's privy to clinical history but not to comparison imaging. Phase2 - radiologists provided comparison imaging. For phase1, studies were reviewed using three steps: (a) MIP only (positive/negative/intermediate); (b) ABMR (recall/no recall) and (c) With T2 (for changes in recommendations). Radiologist also recorded total time for interpretation. In Phase2 the MRIs coded as "recall" were re-reviewed with available comparison studies, noting changes in final recommendation. The abnormal interpretation rates (AIRs) were calculated for phase1 and phase2 results with comparison to the original full protocol. Of the 259 patients (avg. age-52 years; range 26-78), there were seven cancers (three invasive, three DCIS and one breast lymphoma). Acquisition time for ABMR was 3 minutes, ABMR + T2-8 minutes, and original full protocol 16 minutes. Average MIP was positive or indeterminate in 86% (6/7) and negative in 14% (1/7) cancers. The average AIR for MIP only was 20.8% (sens-77.1%; spec-80.8%. The AIR w/o comparisons was 25.6% (sens-91.4%; spec- 76.2%); however the average AIR decreased in phase 2 with comparisons to 13.7% (sens-91.4%; spec-88.5%). The AIR of the original full protocol read was 16.2% (sens-100%; spec-85.7%). Addition of T2 changed assessment in only 3% (1.2%-6.5%). Avg. read time for ABMR including T2 was 2.5 minutes (1.6-4.0 minutes). ABMR is reliable for breast cancer screening, with acceptable interpretation time and acceptable AIR.
Collapse
Affiliation(s)
- Vandana Dialani
- Department of Radiology, Beth Israel Deaconess Medical Centre, Boston, Massachusetts
| | - Irene Tseng
- Department of Radiology, Winchester Hospital, Lahey Health, Winchester, Massachusetts
| | - Priscilla J Slanetz
- Department of Radiology, Beth Israel Deaconess Medical Centre, Boston, Massachusetts
| | - Valerie Fein-Zachary
- Department of Radiology, Beth Israel Deaconess Medical Centre, Boston, Massachusetts
| | - Jordana Phillips
- Department of Radiology, Beth Israel Deaconess Medical Centre, Boston, Massachusetts
| | - Evguenia Karimova
- Department of Radiology, Beth Israel Deaconess Medical Centre, Boston, Massachusetts
| | - Alexander Brook
- Department of Radiology, Beth Israel Deaconess Medical Centre, Boston, Massachusetts
| | - Tejas S Mehta
- Department of Radiology, Beth Israel Deaconess Medical Centre, Boston, Massachusetts
| |
Collapse
|
45
|
Implementing Abbreviated MRI Screening Into a Breast Imaging Practice. AJR Am J Roentgenol 2019; 213:234-237. [DOI: 10.2214/ajr.18.20396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Multireader Study on the Diagnostic Accuracy of Ultrafast Breast Magnetic Resonance Imaging for Breast Cancer Screening. Invest Radiol 2019; 53:579-586. [PMID: 29944483 DOI: 10.1097/rli.0000000000000494] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Breast cancer screening using magnetic resonance imaging (MRI) has limited accessibility due to high costs of breast MRI. Ultrafast dynamic contrast-enhanced breast MRI can be acquired within 2 minutes. We aimed to assess whether screening performance of breast radiologist using an ultrafast breast MRI-only screening protocol is as good as performance using a full multiparametric diagnostic MRI protocol (FDP). MATERIALS AND METHODS The institutional review board approved this study, and waived the need for informed consent. Between January 2012 and June 2014, 1791 consecutive breast cancer screening examinations from 954 women with a lifetime risk of more than 20% were prospectively collected. All women were scanned using a 3 T protocol interleaving ultrafast breast MRI acquisitions in a full multiparametric diagnostic MRI protocol consisting of standard dynamic contrast-enhanced sequences, diffusion-weighted imaging, and T2-weighted imaging. Subsequently, a case set was created including all biopsied screen-detected lesions in this period (31 malignant and 54 benign) and 116 randomly selected normal cases with more than 2 years of follow-up. Prior examinations were included when available. Seven dedicated breast radiologists read all 201 examinations and 153 available priors once using the FDP and once using ultrafast breast MRI only in 2 counterbalanced and crossed-over reading sessions. RESULTS For reading the FDP versus ultrafast breast MRI alone, sensitivity was 0.86 (95% confidence interval [CI], 0.81-0.90) versus 0.84 (95% CI, 0.78-0.88) (P = 0.50), specificity was 0.76 (95% CI, 0.74-0.79) versus 0.82 (95% CI, 0.79-0.84) (P = 0.002), positive predictive value was 0.40 (95% CI, 0.36-0.45) versus 0.45 (95% CI, 0.41-0.50) (P = 0.14), and area under the receiver operating characteristics curve was 0.89 (95% CI, 0.82-0.96) versus 0.89 (95% CI, 0.82-0.96) (P = 0.83). Ultrafast breast MRI reading was 22.8% faster than reading FDP (P < 0.001). Interreader agreement is significantly better for ultrafast breast MRI (κ = 0.730; 95% CI, 0.699-0.761) than for the FDP (κ = 0.665; 95% CI, 0.633-0.696). CONCLUSIONS Breast MRI screening using only an ultrafast breast MRI protocol is noninferior to screening with an FDP and may result in significantly higher screening specificity and shorter reading time.
Collapse
|
47
|
Hellgren RJ, Sundbom AE, Czene K, Izhaky D, Hall P, Dickman PW. Does three-dimensional functional infrared imaging improve breast cancer detection based on digital mammography in women with dense breasts? Eur Radiol 2019; 29:6227-6235. [PMID: 31115623 PMCID: PMC6795638 DOI: 10.1007/s00330-019-06248-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/19/2019] [Indexed: 11/30/2022]
Abstract
Purpose We aimed to estimate the incremental cancer detection rate achieved by adding three-dimensional functional infrared imaging (3DIRI) to digital mammography in women with dense breasts. Materials and methods In this prospective study conducted between December 2014 and April 2016, 1727 women (median age 56) with percentage volumetric breast density > 6% were recruited at routine screening mammography to undergo additional 3DIRI. The 3DIRI findings were classified as negative or positive. Women with a negative mammography but positive 3DIRI were referred to dynamic contrast-enhanced MRI, whereas all other women underwent routine follow-up based on the mammography finding. Diagnosis of breast cancer was verified by histopathologic examination. The number of women diagnosed with a malignancy formed the basis of our statistical analysis. Results Mammography detected 7 cancers in 7 women. Of 1692 women with negative mammography, 222 women (13%) had a positive 3DIRI of which 219 underwent MRI. An additional 6 cancers were identified in 5 women, increasing the diagnostic yield from 7 of 1727 (0.41%) to 12 of 1727 (0.69%). The incremental cancer detection rate associated with using 3DIRI to select women for MRI was 5 of 222 (22.5 additional cancers per 1000). Conclusion The use of 3DIRI to select women for an additional MRI can result in the detection of additional cancers in women with dense breasts, but at the expense of additional false positives and considerably lower positive predictive value of the combined examinations. Additional studies are necessary to evaluate the role of 3DIRI as an adjunct to mammography. Key Points • Use of three-dimensional functional infrared imaging to select women for an MRI in addition to screening mammography has the potential to improve breast cancer detection in women with dense breasts. Electronic supplementary material The online version of this article (10.1007/s00330-019-06248-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roxanna J Hellgren
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, 118 83, Stockholm, Sweden. .,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Ann E Sundbom
- Department of Medical Imaging, Division of Breast Imaging, Södersjukhuset, 118 83, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - David Izhaky
- Department of Research and Development, Real Imaging, 1 Golan St., 7019802, Airport City, Israel
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden.,Department of Oncology, Södersjukhuset, 118 83, Stockholm, Sweden
| | - Paul W Dickman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
48
|
|
49
|
Mann RM, Kuhl CK, Moy L. Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imaging 2019; 50:377-390. [PMID: 30659696 PMCID: PMC6767440 DOI: 10.1002/jmri.26654] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Multiple studies in the first decade of the 21st century have established contrast-enhanced breast MRI as a screening modality for women with a hereditary or familial increased risk for the development of breast cancer. In recent studies, in women with various risk profiles, the sensitivity ranges between 81% and 100%, which is approximately twice as high as the sensitivity of mammography. The specificity increases in follow-up rounds to around 97%, with positive predictive values for biopsy in the same range as for mammography. MRI preferentially detects the more aggressive/invasive types of breast cancer, but has a higher sensitivity than mammography for any type of cancer. This performance implies that in women screened with breast MRI, all other examinations must be regarded as supplemental. Mammography may yield ~5% additional cancers, mostly ductal carcinoma in situ, while slightly decreasing specificity and increasing the costs. Ultrasound has no supplemental value when MRI is used. Evidence is mounting that in other groups of women the performance of MRI is likewise superior to more conventional screening techniques. Particularly in women with a personal history of breast cancer, the gain seems to be high, but also in women with a biopsy history of lobular carcinoma in situ and even women at average risk, similar results are reported. Initial outcome studies show that breast MRI detects cancer earlier, which induces a stage-shift increasing the survival benefit of screening. Cost-effectiveness is still an issue, particularly for women at lower risk. Since costs of the MRI scan itself are a driving factor, efforts to reduce these costs are essential. The use of abbreviated MRI protocols may enable more widespread use of breast MRI for screening. Level of Evidence: 1 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2019;50:377-390.
Collapse
Affiliation(s)
- Ritse M Mann
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Radiology, the Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Christiane K Kuhl
- Department of Diagnostic and Interventional Radiology, University of Aachen, Aachen, Germany
| | - Linda Moy
- Center for Advanced Imaging Innovation and Research / Department of Radiology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
50
|
Zhang M, Horvat JV, Bernard-Davila B, Marino MA, Leithner D, Ochoa-Albiztegui RE, Helbich TH, Morris EA, Thakur S, Pinker K. Multiparametric MRI model with dynamic contrast-enhanced and diffusion-weighted imaging enables breast cancer diagnosis with high accuracy. J Magn Reson Imaging 2018; 49:864-874. [PMID: 30375702 PMCID: PMC6375760 DOI: 10.1002/jmri.26285] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022] Open
Abstract
Background The MRI Breast Imaging‐Reporting and Data System (BI‐RADS) lexicon recommends that a breast MRI protocol contain T2‐weighted and dynamic contrast‐enhanced (DCE) MRI sequences. The addition of diffusion‐weighted imaging (DWI) significantly improves diagnostic accuracy. This study aims to clarify which descriptors from DCE‐MRI, DWI, and T2‐weighted imaging are most strongly associated with a breast cancer diagnosis. Purpose/Hypothesis To develop a multiparametric MRI (mpMRI) model for breast cancer diagnosis incorporating American College of Radiology (ACR) BI‐RADS recommended descriptors for breast MRI with DCE, T2‐weighted imaging, and DWI with apparent diffusion coefficient (ADC) mapping. Study Type Retrospective. Subjects In all, 188 patients (mean 51.6 years) with 210 breast tumors (136 malignant and 74 benign) who underwent mpMRI from December 2010 to September 2014. Field Strength/Sequence IR inversion recovert DCE‐MRI dynamic contrast‐enhanced magnetic resonance imaging VIBE Volume‐Interpolated‐Breathhold‐Examination FLASH turbo fast‐low‐angle‐shot TWIST Time‐resolved angiography with stochastic Trajectories. Assessment Two radiologists in consensus and another radiologist independently evaluated the mpMRI data. Characteristics for mass (n = 182) and nonmass (n = 28) lesions were recorded on DCE and T2‐weighted imaging according to BI‐RADS, as well as DWI descriptors. Two separate models were analyzed, using DCE‐MRI BI‐RADS descriptors, T2‐weighted imagines, and ADCmean as either a continuous or binary form using a previously published ADC cutoff value of ≤1.25 × 10−3 mm2/sec for differentiation between benign and malignant lesions. Histopathology was the standard of reference. Statistical Tests χ2 test, Fisher's exact test, Kruskal–Wallis test, Pearson correlation coefficient, multivariate logistic regression analysis, Hosmer–Lemeshow test of goodness‐of‐fit, receiver operating characteristics analysis. Results In Model 1, ADCmean (P = 0.0031), mass margins with DCE (P = 0.0016), and delayed enhancement with DCE (P = 0.0016) were significantly and independently associated with breast cancer diagnosis; Model 2 identified ADCmean (P = 0.0031), mass margins with DCE (P = 0.0012), initial enhancement (P = 0.0422), and delayed enhancement with DCE (P = 0.0065) to be significantly independently associated with breast cancer diagnosis. T2‐weighted imaging variables were not included in the final models. Data Conclusion mpMRI with DCE‐MRI and DWI with ADC mapping enables accurate breast cancer diagnosis. A model using quantitative and qualitative descriptors from DCE‐MRI and DWI identifies breast cancer with a high diagnostic accuracy. T2‐weighted imaging does not significantly contribute to breast cancer diagnosis. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:864–874.
Collapse
Affiliation(s)
- Michelle Zhang
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA
| | - Joao V Horvat
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA
| | - Blanca Bernard-Davila
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA
| | - Maria Adele Marino
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA.,Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Vienna, Austria
| | - Doris Leithner
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA.,University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - R Elena Ochoa-Albiztegui
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA
| | - Thomas H Helbich
- Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| | - Elizabeth A Morris
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA
| | - Sunitha Thakur
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA
| | - Katja Pinker
- Memorial Sloan Kettering Cancer Center, Department of Radiology, Breast Imaging Service, NY, New York, USA.,Department of Biomedical Sciences and Morphologic and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|