1
|
Vu BTD, Kamona N, Kim Y, Ng JJ, Jones BC, Wehrli FW, Song HK, Bartlett SP, Lee H, Rajapakse CS. Three contrasts in 3 min: Rapid, high-resolution, and bone-selective UTE MRI for craniofacial imaging with automated deep-learning skull segmentation. Magn Reson Med 2025; 93:245-260. [PMID: 39219299 PMCID: PMC11735049 DOI: 10.1002/mrm.30275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Ultrashort echo time (UTE) MRI can be a radiation-free alternative to CT for craniofacial imaging of pediatric patients. However, unlike CT, bone-specific MR imaging is limited by long scan times, relatively low spatial resolution, and a time-consuming bone segmentation workflow. METHODS A rapid, high-resolution UTE technique for brain and skull imaging in conjunction with an automatic segmentation pipeline was developed. A dual-RF, dual-echo UTE sequence was optimized for rapid scan time (3 min) and smaller voxel size (0.65 mm3). A weighted least-squares conjugate gradient method for computing the bone-selective image improves bone specificity while retaining bone sensitivity. Additionally, a deep-learning U-Net model was trained to automatically segment the skull from the bone-selective images. Ten healthy adult volunteers (six male, age 31.5 ± 10 years) and three pediatric patients (two male, ages 12 to 15 years) were scanned at 3 T. Clinical CT for the three patients were obtained for validation. Similarities in 3D skull reconstructions relative to clinical standard CT were evaluated based on the Dice similarity coefficient and Hausdorff distance. Craniometric measurements were used to assess geometric accuracy of the 3D skull renderings. RESULTS The weighted least-squares method produces images with enhanced bone specificity, suppression of soft tissue, and separation from air at the sinuses when validated against CT in pediatric patients. Dice similarity coefficient overlap was 0.86 ± 0.05, and the 95th percentile Hausdorff distance was 1.77 ± 0.49 mm between the full-skull binary masks of the optimized UTE and CT in the testing dataset. CONCLUSION An optimized MRI acquisition, reconstruction, and segmentation workflow for craniofacial imaging was developed.
Collapse
Affiliation(s)
- Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, Address: 210 South 33 St, Philadelphia, PA 19104
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, Address: 210 South 33 St, Philadelphia, PA 19104
| | - Yohan Kim
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA, Address: 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Jinggang J. Ng
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA, Address: 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Brandon C. Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, Address: 210 South 33 St, Philadelphia, PA 19104
| | - Felix W. Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104
| | - Scott P. Bartlett
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA, Address: 3401 Civic Center Blvd, Philadelphia, PA 19104
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104
- School of Electronics Engineering, Kyungpook National University, Daegu, South Korea, Address: 80 Daehakro, Bukgu, Daegu, Republic of Korea 41566
| | - Chamith S. Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, Address: 3400 Spruce St, Philadelphia, PA 19104
| |
Collapse
|
2
|
Jacobson AM, Zhao X, Sommer S, Sadik F, Warden SJ, Newman C, Siegmund T, Allen MR, Surowiec RK. A comprehensive set of ultrashort echo time magnetic resonance imaging biomarkers to assess cortical bone health: A feasibility study at clinical field strength. Bone 2024; 181:117031. [PMID: 38311304 PMCID: PMC10923147 DOI: 10.1016/j.bone.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Conventional bone imaging methods primarily use X-ray techniques to assess bone mineral density (BMD), focusing exclusively on the mineral phase. This approach lacks information about the organic phase and bone water content, resulting in an incomplete evaluation of bone health. Recent research highlights the potential of ultrashort echo time magnetic resonance imaging (UTE MRI) to measure cortical porosity and estimate BMD based on signal intensity. UTE MRI also provides insights into bone water distribution and matrix organization, enabling a comprehensive bone assessment with a single imaging technique. Our study aimed to establish quantifiable UTE MRI-based biomarkers at clinical field strength to estimate BMD and microarchitecture while quantifying bound water content and matrix organization. METHODS Femoral bones from 11 cadaveric specimens (n = 4 males 67-92 yrs of age, n = 7 females 70-95 yrs of age) underwent dual-echo UTE MRI (3.0 T, 0.45 mm resolution) with different echo times and high resolution peripheral quantitative computed tomography (HR-pQCT) imaging (60.7 μm voxel size). Following registration, a 4.5 mm HR-pQCT region of interest was divided into four quadrants and used across the multi-modal images. Statistical analysis involved Pearson correlation between UTE MRI porosity index and a signal-intensity technique used to estimate BMD with corresponding HR-pQCT measures. UTE MRI was used to calculate T1 relaxation time and a novel bound water index (BWI), compared across subregions using repeated measures ANOVA. RESULTS The UTE MRI-derived porosity index and signal-intensity-based estimated BMD correlated with the HR-pQCT variables (porosity: r = 0.73, p = 0.006; BMD: r = 0.79, p = 0.002). However, these correlations varied in strength when we examined each of the four quadrants (subregions, r = 0.11-0.71). T1 relaxometry and the BWI exhibited variations across the four subregions, though these differences were not statistically significant. Notably, we observed a strong negative correlation between T1 relaxation time and the BWI (r = -0.87, p = 0.0006). CONCLUSION UTE MRI shows promise for being an innocuous method for estimating cortical porosity and BMD parameters while also giving insight into bone hydration and matrix organization. This method offers the potential to equip clinicians with a more comprehensive array of imaging biomarkers to assess bone health without the need for invasive or ionizing procedures.
Collapse
Affiliation(s)
- Andrea M Jacobson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Xuandong Zhao
- Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Stefan Sommer
- Swiss Center for Musculoskeletal Imaging (SCMI), Balgrist Campus, Zurich, Switzerland; Advanced Clinical Imaging Technology (ACIT), Siemens Healthineers International AG, Zurich, Switzerland.
| | - Farhan Sadik
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, USA.
| | - Christopher Newman
- Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Thomas Siegmund
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Matthew R Allen
- Dept. of Anatomy, Physiology, and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Kamona N, Jones BC, Lee H, Song HK, Rajapakse CS, Wagner CS, Bartlett SP, Wehrli FW. Cranial bone imaging using ultrashort echo-time bone-selective MRI as an alternative to gradient-echo based "black-bone" techniques. MAGMA (NEW YORK, N.Y.) 2024; 37:83-92. [PMID: 37934295 PMCID: PMC10923077 DOI: 10.1007/s10334-023-01125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVES CT is the clinical standard for surgical planning of craniofacial abnormalities in pediatric patients. This study evaluated three MRI cranial bone imaging techniques for their strengths and limitations as a radiation-free alternative to CT. METHODS Ten healthy adults were scanned at 3 T with three MRI sequences: dual-radiofrequency and dual-echo ultrashort echo time sequence (DURANDE), zero echo time (ZTE), and gradient-echo (GRE). DURANDE bright-bone images were generated by exploiting bone signal intensity dependence on RF pulse duration and echo time, while ZTE bright-bone images were obtained via logarithmic inversion. Three skull segmentations were derived, and the overlap of the binary masks was quantified using dice similarity coefficient. Craniometric distances were measured, and their agreement was quantified. RESULTS There was good overlap of the three masks and excellent agreement among craniometric distances. DURANDE and ZTE showed superior air-bone contrast (i.e., sinuses) and soft-tissue suppression compared to GRE. DISCUSSIONS ZTE has low levels of acoustic noise, however, ZTE images had lower contrast near facial bones (e.g., zygomatic) and require effective bias-field correction to separate bone from air and soft-tissue. DURANDE utilizes a dual-echo subtraction post-processing approach to yield bone-specific images, but the sequence is not currently manufacturer-supported and requires scanner-specific gradient-delay corrections.
Collapse
Affiliation(s)
- Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- School of Electronics Engineering, Kyungpook National University, Daegu, South Korea
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Connor S Wagner
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott P Bartlett
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|