1
|
Yang C, Fan Y, Zhao D, Wang Z, Wang X, Wang H, Hu Y, He L, Zhang J, Wang Y, Liu Y, Sha X, Su J. Habitat-Based Radiomics for Predicting EGFR Mutations in Exon 19 and 21 From Brain Metastasis. Acad Radiol 2024; 31:3764-3773. [PMID: 38599906 DOI: 10.1016/j.acra.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024]
Abstract
RATIONALE AND OBJECTIVES To explore and externally validate habitat-based radiomics for preoperative prediction of epidermal growth factor receptor (EGFR) mutations in exon 19 and 21 from MRI imaging of non-small cell lung cancer (NSCLC)-originated brain metastasis (BM). METHODS A total of 170, 62 and 61 patients from center 1, center 2 and center 3, respectively were included. All patients underwent contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI scans. Radiomics features were extracted from the tumor active (TA) and peritumoral edema (PE) regions in each MRI slice. The most important features were selected by the least absolute shrinkage and selection operator regression to develop radiomics signatures based on TA (RS-TA), PE (RS-PE) and their combination (RS-Com). Receiver operating characteristic (ROC) curve analysis was performed to access performance of radiomics models for both internal and external validation cohorts. RESULTS 10, four and six most predictive features were identified to be strongly associated with the EGFR mutation status, exon 19 and exon 21, respectively. The RSs derived from the PE region outperformed those from the TA region for predicting the EGFR mutation, exon 19 and exon 21. The RS-Coms generated the highest performance in the primary training (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.955 vs. 0.946 vs. 0.928), internal validation (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.879 vs. 0.819 vs. 0.882), external validation 1 (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.830 vs. 0.825 vs. 0.822), and external validation 2 (AUCs, RS-EGFR-Com vs. RS-exon 19-Com vs. RS-exon 21-Com, 0.812 vs. 0.818 vs. 0.800) cohort. CONCLUSION The developed habitat-based radiomics model can be used to accurately predict the EGFR mutation subtypes, which may potentially guide personalized treatments for NSCLC patients with BM.
Collapse
Affiliation(s)
- Chunna Yang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Ying Fan
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Dan Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Zekun Wang
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Yanjun Hu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110122, PR China
| | - Jin Zhang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Yan Liu
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Xianzheng Sha
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China.
| |
Collapse
|
2
|
Li Y, Huo H, Liu H, Zheng Y, Tian Z, Jiang X, Jin S, Hou Y, Yang Q, Teng F, Liu T. Coronary CTA-based radiomic signature of pericoronary adipose tissue predict rapid plaque progression. Insights Imaging 2024; 15:151. [PMID: 38900243 PMCID: PMC11189889 DOI: 10.1186/s13244-024-01731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVES To explore the value of radiomic features derived from pericoronary adipose tissue (PCAT) obtained by coronary computed tomography angiography for prediction of coronary rapid plaque progression (RPP). METHODS A total of 1233 patients from two centers were included in this multicenter retrospective study. The participants were divided into training, internal validation, and external validation cohorts. Conventional plaque characteristics and radiomic features of PCAT were extracted and analyzed. Random Forest was used to construct five models. Model 1: clinical model. Model 2: plaque characteristics model. Model 3: PCAT radiomics model. Model 4: clinical + radiomics model. Model 5: plaque characteristics + radiomics model. The evaluation of the models encompassed identification accuracy, calibration precision, and clinical applicability. Delong' test was employed to compare the area under the curve (AUC) of different models. RESULTS Seven radiomic features, including two shape features, three first-order features, and two textural features, were selected to build the PCAT radiomics model. In contrast to the clinical model and plaque characteristics model, the PCAT radiomics model (AUC 0.85 for training, 0.84 for internal validation, and 0.81 for external validation; p < 0.05) achieved significantly higher diagnostic performance in predicting RPP. The separate combination of radiomics with clinical and plaque characteristics model did not further improve diagnostic efficacy statistically (p > 0.05). CONCLUSION Radiomic feature analysis derived from PCAT significantly improves the prediction of RPP as compared to clinical and plaque characteristics. Radiomic analysis of PCAT may improve monitoring RPP over time. CRITICAL RELEVANCE STATEMENT Our findings demonstrate PCAT radiomics model exhibited good performance in the prediction of RPP, with potential clinical value. KEY POINTS Rapid plaque progression may be predictable with radiomics from pericoronary adipose tissue. Fibrous plaque volume, diameter stenosis, and fat attenuation index were identified as risk factors for predicting rapid plaque progression. Radiomics features of pericoronary adipose tissue can improve the predictive ability of rapid plaque progression.
Collapse
Affiliation(s)
- Yue Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Huaibi Huo
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Hui Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zheng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Zhaoxin Tian
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Shiqi Jin
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fei Teng
- Department of Radiology, Chinese Academy of Medical Sciences Fuwai Hospital Shenzhen Hospital, Shenzhen, China.
| | - Ting Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Hou S, Wang H, Wang X, Chen H, Zhou B, Meng R, Sha X, Chang S, Wang H, Jiang W. Tumor-liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof-of-concept study. Med Phys 2024; 51:1083-1091. [PMID: 37408393 DOI: 10.1002/mp.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non-small-cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision-making. PURPOSE To explore the value of tumor-liver interface (TLI)-based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. METHODS This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast-enhanced T1-weighted (CET1) and T2-weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS-TLI) and the whole tumor (RS-W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. RESULTS A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS-TLI showed better prediction performance than RS-W in the training (AUCs, RS-TLI vs. RS-W, 0.842 vs. 0.797), internal validation (AUCs, RS-TLI vs. RS-W, 0.771 vs. 0.676) and external validation (AUCs, RS-TLI vs. RS-W, 0.733 vs. 0.679) cohort. CONCLUSION Our study demonstrated that TLI-based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi-parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.
Collapse
Affiliation(s)
- Shaoping Hou
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, P.R. China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital, Shenyang, Liaoning, P.R. China
| | - Boyu Zhou
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Ruiqing Meng
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Xianzheng Sha
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Shijie Chang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P.R. China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P.R. China
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P.R. China
| |
Collapse
|
4
|
Nguyen HS, Ho DKN, Nguyen NN, Tran HM, Tam KW, Le NQK. Predicting EGFR Mutation Status in Non-Small Cell Lung Cancer Using Artificial Intelligence: A Systematic Review and Meta-Analysis. Acad Radiol 2024; 31:660-683. [PMID: 37120403 DOI: 10.1016/j.acra.2023.03.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
RATIONALE AND OBJECTIVES Recent advancements in artificial intelligence (AI) render a substantial promise for epidermal growth factor receptor (EGFR) mutation status prediction in non-small cell lung cancer (NSCLC). We aimed to evaluate the performance and quality of AI algorithms that use radiomics features in predicting EGFR mutation status in patient with NSCLC. MATERIALS AND METHODS We searched PubMed (Medline), EMBASE, Web of Science, and IEEExplore for studies published up to February 28, 2022. Studies utilizing an AI algorithm (either conventional machine learning [cML] and deep learning [DL]) for predicting EGFR mutations in patients with NSLCL were included. We extracted binary diagnostic accuracy data and constructed a bivariate random-effects model to obtain pooled sensitivity, specificity, and 95% confidence interval. This study is registered with PROSPERO, CRD42021278738. RESULTS Our search identified 460 studies, of which 42 were included. Thirty-five studies were included in the meta-analysis. The AI algorithms exhibited an overall area under the curve (AUC) value of 0.789 and pooled sensitivity and specificity levels of 72.2% and 73.3%, respectively. The DL algorithms outperformed cML in terms of AUC (0.822 vs. 0.775) and sensitivity (80.1% vs. 71.1%), but had lower specificity (70.0% vs. 73.8%, p-value < 0.001) compared to cML. Subgroup analysis revealed that the use of positron-emission tomography/computed tomography, additional clinical information, deep feature extraction, and manual segmentation can improve diagnostic performance. CONCLUSION DL algorithms can serve as a novel method for increasing predictive accuracy and thus have considerable potential for use in predicting EGFR mutation status in patient with NSCLC. We also suggest that guidelines on using AI algorithms in medical image analysis should be developed with a focus on oncologic radiomics.
Collapse
Affiliation(s)
- Hung Song Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.); Department of Pediatrics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam (H.S.N.); Intensive Care Unit Department, Children's Hospital 1, Ho Chi Minh City, Viet Nam (H.S.N.)
| | - Dang Khanh Ngan Ho
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan (D.K.N.H.)
| | - Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (H.S.N., N.N.N.)
| | - Huy Minh Tran
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam (H.M.T.)
| | - Ka-Wai Tam
- Center for Evidence-based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Cochrane Taiwan, Taipei Medical University, Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (K.-W.T.); Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan (K.-W.T.)
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); AIBioMed Research Group, Taipei Medical University, Taipei 110, Taiwan (N.Q.K.L.); Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan (N.Q.K.L.).
| |
Collapse
|
5
|
Caloro E, Gnocchi G, Quarrella C, Ce M, Carrafiello G, Cellina M. Artificial Intelligence in Bone Metastasis Imaging: Recent Progresses from Diagnosis to Treatment - A Narrative Review. Crit Rev Oncog 2024; 29:77-90. [PMID: 38505883 DOI: 10.1615/critrevoncog.2023050470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The introduction of artificial intelligence (AI) represents an actual revolution in the radiological field, including bone lesion imaging. Bone lesions are often detected both in healthy and oncological patients and the differential diagnosis can be challenging but decisive, because it affects the diagnostic and therapeutic process, especially in case of metastases. Several studies have already demonstrated how the integration of AI-based tools in the current clinical workflow could bring benefits to patients and to healthcare workers. AI technologies could help radiologists in early bone metastases detection, increasing the diagnostic accuracy and reducing the overdiagnosis and the number of unnecessary deeper investigations. In addition, radiomics and radiogenomics approaches could go beyond the qualitative features, visible to the human eyes, extrapolating cancer genomic and behavior information from imaging, in order to plan a targeted and personalized treatment. In this article, we want to provide a comprehensive summary of the most promising AI applications in bone metastasis imaging and their role from diagnosis to treatment and prognosis, including the analysis of future challenges and new perspectives.
Collapse
Affiliation(s)
- Elena Caloro
- Università degli studi di Milano, via Festa del Perdono, 7, 20122 Milan, Italy
| | - Giulia Gnocchi
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Cettina Quarrella
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Ce
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| | - Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| |
Collapse
|
6
|
Cheng Y, Wang H, Yuan W, Wang H, Zhu Y, Chen H, Jiang W. Combined radiomics of primary tumour and bone metastasis improve the prediction of EGFR mutation status and response to EGFR-TKI therapy for NSCLC. Phys Med 2023; 116:103177. [PMID: 38000098 DOI: 10.1016/j.ejmp.2023.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE To develop radiomics models of primary tumour and spinal metastases to predict epidermal growth factor receptor (EGFR) mutations and therapeutic response to EGFR-tyrosine kinase inhibitor (TKI) in patients with metastatic non-small-cell lung cancer (NSCLC). METHODS We enrolled 203 patients with spinal metastases between December 2017 and September 2021, classified as patients with the EGFR mutation or EGFR wild-type. All patients underwent thoracic CT and spinal MRI scans before any treatment. Radiomics analysis was performed to extract features from primary tumour and metastases images and identify predictive features with the least absolute shrinkage and selection operator. Radiomics signatures (RS) were constructed based on primary tumour (RS-Pri), metastases (RS-Met), and in combination (RS-Com) to predict EGFR mutation status and response to EGFR-TKI. Receiver operating characteristic (ROC) curve analysis with 10-fold cross-validation was applied to assess the performance of the models. RESULTS To predict the EGFR mutation status, the RS based on the combination of primary tumour and metastases improved the prediction AUCs compared to those based on the primary tumour or metastasis alone in the training (RS-Com-EGFR: 0.927) and validation (RS-Com-EGFR: 0.812) cohorts. To predict response to EGFR-TKI, the developed RS based on combined primary tumour and metastasis generated the highest AUCs in the training (RS-Com-TKI: 0.880) and validation (RS-Com-TKI: 0.798) cohort. CONCLUSIONS Primary NSCLC and spinal metastases can provide complementary information to predict the EGFR mutation status and response to EGFR-TKI. The developed models that integrate primary lesions and metastases may be potential imaging markers to guide individual treatment decisions.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Wendi Yuan
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Haotian Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China
| | - Yuheng Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning 110122, PR China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 110004 Shenyang, PR China.
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning 110042, PR China.
| |
Collapse
|
7
|
Niu S, Zhang H, Wang X, Jiang W. Radiomics of Spinal Metastases Originating From Primary Nonsmall Cell Lung Cancer or Breast Cancer and Ability to Predict Epidermal Growth Factor Receptor Mutation/Ki-67 Levels. J Comput Assist Tomogr 2023; Publish Ahead of Print:00004728-990000000-00160. [PMID: 37380152 DOI: 10.1097/rct.0000000000001465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
OBJECTIVES The aims of the study are to explore spinal magnetic resonance imaging (MRI)-based radiomics to differentiate spinal metastases from primary nonsmall cell lung cancer (NSCLC) or breast cancer (BC) and to further predict the epidermal growth factor receptor (EGFR) mutation and Ki-67 expression level. METHODS In total, 268 patients with spinal metastases from primary NSCLC (n = 148) and BC (n = 120) were enrolled between January 2016 and December 2021. All patients underwent spinal contrast-enhanced T1-weighted MRI before treatment. Two- and 3-dimensional radiomics features were extracted from the spinal MRI images of each patient. The least absolute shrinkage and selection operator regression were applied to identify the most important features related to the origin of the metastasis and the EGFR mutation and Ki-67 level. Radiomics signatures (RSs) were established using the selected features and evaluated using receiver operating characteristic curve analysis. RESULTS We identified 6, 5, and 4 features from spinal MRI to develop Ori-RS, EGFR-RS, and Ki-67-RS for predicting the metastatic origin, EGFR mutation, and Ki-67 level, respectively. The 3 RSs performed well in the training (area under the receiver operating characteristic curves: Ori-RS vs EGFR-RS vs Ki-67-RS, 0.890 vs 0.793 vs 0.798) and validation (area under the receiver operating characteristic curves: Ori-RS vs EGFR-RS vs Ki-67-RS, 0.881 vs 0.744 vs 0.738) cohorts. CONCLUSIONS Our study demonstrated the value of spinal MRI-based radiomics for identifying the metastatic origin and evaluating the EGFR mutation status and Ki-67 level in patients with NSCLC and BC, respectively, which may have the potential to guide subsequent individual treatment planning.
Collapse
Affiliation(s)
- Shuxian Niu
- From the School of Intelligent Medicine, China Medical University
| | - Hongxiao Zhang
- From the School of Intelligent Medicine, China Medical University
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, People's Republic of China
| |
Collapse
|
8
|
Cao R, Chen H, Wang H, Wang Y, Cui EN, Jiang W. Comprehensive analysis of prediction of the EGFR mutation and subtypes based on the spinal metastasis from primary lung adenocarcinoma. Front Oncol 2023; 13:1154327. [PMID: 37143947 PMCID: PMC10151709 DOI: 10.3389/fonc.2023.1154327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Purpose To investigate the use of multiparameter MRI-based radiomics in the in-depth prediction of epidermal growth factor receptor (EGFR) mutation and subtypes based on the spinal metastasis in patients with primary lung adenocarcinoma. Methods A primary cohort was conducted with 257 patients who pathologically confirmed spinal bone metastasis from the first center between Feb. 2016 and Oct. 2020. An external cohort was developed with 42 patients from the second center between Apr. 2017 and Jun. 2021. All patients underwent sagittal T1-weighted imaging (T1W) and sagittal fat-suppressed T2-weight imaging (T2FS) MRI imaging. Radiomics features were extracted and selected to build radiomics signatures (RSs). Machine learning classify with 5-fold cross-validation were used to establish radiomics models for predicting the EGFR mutation and subtypes. Clinical characteristics were analyzed with Mann-Whitney U and Chi-Square tests to identify the most important factors. Nomogram models were developed integrating the RSs and important clinical factors. Results The RSs derived from T1W showed better performance for predicting the EGFR mutation and subtypes compared with those from T2FS in terms of AUC, accuracy and specificity. The nomogram models integrating RSs from combination of the two MRI sequences and important clinical factors achieved the best prediction capabilities in the training (AUCs, EGFR vs. Exon 19 vs. Exon 21, 0.829 vs. 0.885 vs.0.919), internal validation (AUCs, EGFR vs. Exon 19 vs. Exon 21, 0.760 vs. 0.777 vs.0.811), external validation (AUCs, EGFR vs. Exon 19 vs. Exon 21, 0.780 vs. 0.846 vs.0.818). DCA curves indicated potential clinical values of the radiomics models. Conclusions This study indicated potentials of multi-parametric MRI-based radiomics to assess the EGFR mutation and subtypes. The proposed clinical-radiomics nomogram models can be considered as non-invasive tools to assist clinicians in making individual treatment plans.
Collapse
Affiliation(s)
- Ran Cao
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning, Shenyang, China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, Shenyang, China
| | - Yan Wang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Liaoning, Shenyang, China
| | - E-Nuo Cui
- School of Computer Science and Engineering, Shenyang University, Shenyang, China
- *Correspondence: E-Nuo Cui, ; Wenyan Jiang,
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, Shenyang, China
- *Correspondence: E-Nuo Cui, ; Wenyan Jiang,
| |
Collapse
|
9
|
Deep learning for preoperative prediction of the EGFR mutation and subtypes based on the MRI image of spinal metastasis from primary NSCLC. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Ong W, Zhu L, Zhang W, Kuah T, Lim DSW, Low XZ, Thian YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers (Basel) 2022; 14:4025. [PMID: 36011018 PMCID: PMC9406500 DOI: 10.3390/cancers14164025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal metastasis is the most common malignant disease of the spine. Recently, major advances in machine learning and artificial intelligence technology have led to their increased use in oncological imaging. The purpose of this study is to review and summarise the present evidence for artificial intelligence applications in the detection, classification and management of spinal metastasis, along with their potential integration into clinical practice. A systematic, detailed search of the main electronic medical databases was undertaken in concordance with the PRISMA guidelines. A total of 30 articles were retrieved from the database and reviewed. Key findings of current AI applications were compiled and summarised. The main clinical applications of AI techniques include image processing, diagnosis, decision support, treatment assistance and prognostic outcomes. In the realm of spinal oncology, artificial intelligence technologies have achieved relatively good performance and hold immense potential to aid clinicians, including enhancing work efficiency and reducing adverse events. Further research is required to validate the clinical performance of the AI tools and facilitate their integration into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Wenqiao Zhang
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Tricia Kuah
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Desmond Shi Wei Lim
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Yee Liang Thian
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd., Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
11
|
Huo JW, Luo TY, Diao L, Lv FJ, Chen WD, Yu RZ, Li Q. Using combined CT-clinical radiomics models to identify epidermal growth factor receptor mutation subtypes in lung adenocarcinoma. Front Oncol 2022; 12:846589. [PMID: 36059655 PMCID: PMC9434115 DOI: 10.3389/fonc.2022.846589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background To investigate the value of computed tomography (CT)-based radiomics signatures in combination with clinical and CT morphological features to identify epidermal growth factor receptor (EGFR)-mutation subtypes in lung adenocarcinoma (LADC). Methods From February 2012 to October 2019, 608 patients were confirmed with LADC and underwent chest CT scans. Among them, 307 (50.5%) patients had a positive EGFR-mutation and 301 (49.5%) had a negative EGFR-mutation. Of the EGFR-mutant patients, 114 (37.1%) had a 19del -mutation, 155 (50.5%) had a L858R-mutation, and 38 (12.4%) had other rare mutations. Three combined models were generated by incorporating radiomics signatures, clinical, and CT morphological features to predict EGFR-mutation status. Patients were randomly split into training and testing cohorts, 80% and 20%, respectively. Model 1 was used to predict positive and negative EGFR-mutation, model 2 was used to predict 19del and non-19del mutations, and model 3 was used to predict L858R and non-L858R mutations. The receiver operating characteristic curve and the area under the curve (AUC) were used to evaluate their performance. Results For the three models, model 1 had AUC values of 0.969 and 0.886 in the training and validation cohorts, respectively. Model 2 had AUC values of 0.999 and 0.847 in the training and validation cohorts, respectively. Model 3 had AUC values of 0.984 and 0.806 in the training and validation cohorts, respectively. Conclusion Combined models that incorporate radiomics signature, clinical, and CT morphological features may serve as an auxiliary tool to predict EGFR-mutation subtypes and contribute to individualized treatment for patients with LADC.
Collapse
Affiliation(s)
- Ji-wen Huo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian-you Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Diao
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Fa-jin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-dao Chen
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Rui-ze Yu
- Ocean International Center, The Infervision Medical Technology Co., Ltd., Beijing, China
| | - Qi Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Qi Li,
| |
Collapse
|
12
|
Fan Y, Dong Y, Sun X, Wang H, Zhao P, Wang H, Jiang X. Development and validation of MRI-based radiomics signatures as new markers for preoperative assessment of EGFR mutation and subtypes from bone metastases. BMC Cancer 2022; 22:889. [PMID: 35964032 PMCID: PMC9375915 DOI: 10.1186/s12885-022-09985-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to develop and externally validate contrast-enhanced (CE) T1-weighted MRI-based radiomics for the identification of epidermal growth factor receptor (EGFR) mutation, exon-19 deletion and exon-21 L858R mutation from MR imaging of spinal bone metastasis from primary lung adenocarcinoma. Methods A total of 159 patients from our hospital between January 2017 and September 2021 formed a primary set, and 24 patients from another center between January 2017 and October 2021 formed an independent validation set. Radiomics features were extracted from the CET1 MRI using the Pyradiomics method. The least absolute shrinkage and selection operator (LASSO) regression was applied for selecting the most predictive features. Radiomics signatures (RSs) were developed based on the primary training set to predict EGFR mutations and differentiate between exon-19 deletion and exon-21 L858R. The RSs were validated on the internal and external validation sets using the Receiver Operating Characteristic (ROC) curve analysis. Results Eight, three, and five most predictive features were selected to build RS-EGFR, RS-19, and RS-21 for predicting EGFR mutation, exon-19 deletion and exon-21 L858R, respectively. The RSs generated favorable prediction efficacies for the primary (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.851 vs. 0.816 vs. 0.814) and external validation (AUCs, RS-EGFR vs. RS-19 vs. RS-21, 0.807 vs. 0.742 vs. 0.792) sets. Conclusions Radiomics features from the CE MRI could be used to detect the EGFR mutation, increasing the certainty of identifying exon-19 deletion and exon-21 L858R mutations based on spinal metastasis MR imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09985-4.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Peng Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
13
|
Yin X, Liao H, Yun H, Lin N, Li S, Xiang Y, Ma X. Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol 2022; 86:146-159. [PMID: 35963564 DOI: 10.1016/j.semcancer.2022.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Lung cancer accounts for the main proportion of malignancy-related deaths and most patients are diagnosed at an advanced stage. Immunotherapy and targeted therapy have great advances in application in clinics to treat lung cancer patients, yet the efficacy is unstable. The response rate of these therapies varies among patients. Some biomarkers have been proposed to predict the outcomes of immunotherapy and targeted therapy, including programmed cell death-ligand 1 (PD-L1) expression and oncogene mutations. Nevertheless, the detection tests are invasive, time-consuming, and have high demands on tumor tissue. The predictive performance of conventional biomarkers is also unsatisfactory. Therefore, novel biomarkers are needed to effectively predict the outcomes of immunotherapy and targeted therapy. The application of artificial intelligence (AI) can be a possible solution, as it has several advantages. AI can help identify features that are unable to be used by humans and perform repetitive tasks. By combining AI methods with radiomics, pathology, genomics, transcriptomics, proteomics, and clinical data, the integrated model has shown predictive value in immunotherapy and targeted therapy, which significantly improves the precision treatment of lung cancer patients. Herein, we reviewed the application of AI in predicting the outcomes of immunotherapy and targeted therapy in lung cancer patients, and discussed the challenges and future directions in this field.
Collapse
Affiliation(s)
- Xiaomeng Yin
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Hu Liao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Hong Yun
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Nan Lin
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Shen Li
- West China School of Medicine, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Yu Xiang
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
14
|
Fan Y, Dong Y, Wang H, Wang H, Sun X, Wang X, Zhao P, Luo Y, Jiang X. Development and externally validate MRI-based nomogram to assess EGFR and T790M mutations in patients with metastatic lung adenocarcinoma. Eur Radiol 2022; 32:6739-6751. [PMID: 35729427 DOI: 10.1007/s00330-022-08955-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aims to explore values of multi-parametric MRI-based radiomics for detecting the epidermal growth factor receptor (EGFR) mutation and resistance (T790M) mutation in lung adenocarcinoma (LA) patients with spinal metastasis. METHODS This study enrolled a group of 160 LA patients from our hospital (between Jan. 2017 and Feb. 2021) to build a primary cohort. An external cohort was developed with 32 patients from another hospital (between Jan. 2017 and Jan. 2021). All patients underwent spinal MRI (including T1-weighted (T1W) and T2-weighted fat-suppressed (T2FS)) scans. Radiomics features were extracted from the metastasis for each patient and selected to develop radiomics signatures (RSs) for detecting the EGFR and T790M mutations. The clinical-radiomics nomogram models were constructed with RSs and important clinical parameters. The receiver operating characteristics (ROC) curve was used to evaluate the predication capabilities of each model. Calibration and decision curve analyses (DCA) were constructed to verify the performance of the models. RESULTS For detecting the EGFR and T790M mutation, the developed RSs comprised 9 and 4 most important features, respectively. The constructed nomogram models incorporating RSs and smoking status showed favorite prediction efficacy, with AUCs of 0.849 (Sen = 0.685, Spe = 0.885), 0.828 (Sen = 0.964, Spe = 0.692), and 0.778 (Sen = 0.611, Spe = 0.929) in the training, internal validation, and external validation sets for detecting the EGFR mutation, respectively, and with AUCs of 0.0.842 (Sen = 0.750, Spe = 0.867), 0.823 (Sen = 0.667, Spe = 0.938), and 0.800 (Sen = 0.875, Spe = 0.800) in the training, internal validation, and external validation sets for detecting the T790M mutation, respectively. CONCLUSIONS Radiomics features from the spinal metastasis were predictive on both EGFR and T790M mutations. The constructed nomogram models can be potentially considered as new markers to guild treatment management in LA patients with spinal metastasis. KEY POINTS • To our knowledge, this study was the first approach to detect the EGFR T790M mutation based on spinal metastasis in patients with lung adenocarcinoma. • We identified 13 MRI features that were strongly associated with the EGFR T790M mutation. • The proposed nomogram models can be considered as potential new markers for detecting EGFR and T790M mutations based on spinal metastasis.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China
| | - Yue Dong
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xinyan Sun
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Peng Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Liaoning, 110042, People's Republic of China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
15
|
Cao R, Pang Z, Wang X, Du Z, Chen H, Liu J, Yue Z, Wang H, Luo Y, Jiang X. Radiomics evaluates the EGFR mutation status from the brain metastasis: a multi-center study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To develop and externally validate habitat-based MRI radiomics for preoperative prediction of the EGFR mutation status based on brain metastasis (BM) from primary lung adenocarcinoma (LA). Approach. We retrospectively reviewed 150 and 38 patients from hospital 1 and hospital 2 between January 2017 and December 2021 to form a primary and an external validation cohort, respectively. Radiomics features were calculated from the whole tumor (W), tumor active area (TAA) and peritumoral oedema area (POA) in the contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) MRI image. The least absolute shrinkage and selection operator was applied to select the most important features and to develop radiomics signatures (RSs) based on W (RS-W), TAA (RS-TAA), POA (RS-POA) and in combination (RS-Com). The area under receiver operating characteristic curve (AUC) and accuracy analysis were performed to assess the performance of radiomics models. Main results. RS-TAA and RS-POA outperformed RS-W in terms of AUC, ACC and sensitivity. The multi-region combined RS-Com showed the best prediction performance in the primary validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.901 versus 0.699 versus 0.812 versus 0.883) and external validation (AUCs, RS-Com versus RS-W versus RS-TAA versus RS-POA, 0.900 versus 0.637 versus 0.814 versus 0.842) cohort. Significance. The developed habitat-based radiomics models can accurately detect the EGFR mutation in patients with BM from primary LA, and may provide a preoperative basis for personal treatment planning.
Collapse
|
16
|
Chen L, Liu C, Ye Z, Huang S, Liang T, Li H, Chen J, Chen W, Guo H, Chen T, Yao Y, Jiang J, Sun X, Yi M, Liao S, Yu C, Wu S, Fan B, Zhan X. Predicting Surgical Site Infection Risk after Spinal Tuberculosis Surgery: Development and Validation of a Nomogram. Surg Infect (Larchmt) 2022; 23:564-575. [PMID: 35723640 PMCID: PMC9398487 DOI: 10.1089/sur.2022.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The purpose of this study was to predict the surgical site infection risk after spinal tuberculosis surgery based on a nomogram. Patients and Methods: We collected the clinical data of patients who underwent spinal tuberculosis surgery in our hospital and included all the data in the least absolute shrinkage and selection operator (LASSO) regression analysis. Next, the selected parameters were analyzed using logistic regression. The logistic regression analysis and receiver operating characteristic (ROC) curve analysis were further used to obtain statistically significant parameters. These parameters were then used to construct a nomogram. The C-index, ROC curve, and decision curve analysis (DCA) were used to assess the predictive ability and accuracy of the nomogram, whereas internal verification was used to calculate the C-index by bootstrapping with 1,000 resamples. Results: A total of 394 patients with spinal tuberculosis surgery were included in the study, of whom 76 patients had surgical site infections whereas 318 patients did not. The predicted risk of surgical site infection in the nomogram ranged between 0.01 and 0.98. Both the value of the C-index of the nomogram (95% confidence interval [CI], 0.62–0.76) and the area under the curve (AUC) were found to be 0.69. The net benefit of the model ranged between 0.01 and 0.99. In contrast, the C-index calculated by the internal verification method of the nomogram was found to be 0.68. Conclusions: The risk factors predicting surgical site infection after spinal tuberculosis surgery included albumin, lesion segment, operation time, and incision length.
Collapse
Affiliation(s)
- Liyi Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Chong Liu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Zhen Ye
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Shengsheng Huang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Tuo Liang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Hao Li
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Jiarui Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Wuhua Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Hao Guo
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Tianyou Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Yuanlin Yao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Jie Jiang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Xuhua Sun
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Ming Yi
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Shian Liao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Chaojie Yu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Shaofeng Wu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Binguang Fan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| | - Xinli Zhan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi Province, China
| |
Collapse
|
17
|
Faiella E, Santucci D, Calabrese A, Russo F, Vadalà G, Zobel BB, Soda P, Iannello G, de Felice C, Denaro V. Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031880. [PMID: 35162902 PMCID: PMC8834956 DOI: 10.3390/ijerph19031880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023]
Abstract
(1) Background: The purpose of this review is to study the role of radiomics as a supporting tool in predicting bone disease status, differentiating benign from malignant bone lesions, and characterizing malignant bone lesions. (2) Methods: Two reviewers conducted the literature search independently. Thirteen articles on radiomics as a decision support tool for bone lesions were selected. The quality of the methodology was evaluated according to the radiomics quality score (RQS). (3) Results: All studies were published between 2018 and 2021 and were retrospective in design. Eleven (85%) studies were MRI-based, and two (15%) were CT-based. The sample size was <200 patients for all studies. There is significant heterogeneity in the literature, as evidenced by the relatively low RQS value (average score = 22.6%). There is not a homogeneous protocol used for MRI sequences among the different studies, although the highest predictive ability was always obtained in T2W-FS. Six articles (46%) reported on the potential application of the model in a clinical setting with a decision curve analysis (DCA). (4) Conclusions: Despite the variability in the radiomics method application, the similarity of results and conclusions observed is encouraging. Substantial limits were found; prospective and multicentric studies are needed to affirm the role of radiomics as a supporting tool.
Collapse
Affiliation(s)
- Eliodoro Faiella
- Department of Radiology, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (E.F.); (D.S.); (B.B.Z.)
| | - Domiziana Santucci
- Department of Radiology, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (E.F.); (D.S.); (B.B.Z.)
| | - Alessandro Calabrese
- Department of Radiology, University of Rome “Sapienza”, Viale del Policlinico, 00161 Roma, Italy;
- Correspondence:
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (F.R.); (G.V.); (V.D.)
| | - Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (F.R.); (G.V.); (V.D.)
| | - Bruno Beomonte Zobel
- Department of Radiology, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (E.F.); (D.S.); (B.B.Z.)
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (P.S.); (G.I.)
| | - Giulio Iannello
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (P.S.); (G.I.)
| | - Carlo de Felice
- Department of Radiology, University of Rome “Sapienza”, Viale del Policlinico, 00161 Roma, Italy;
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, University of Rome “Campus Bio-Medico”, Via Alvaro del Portillo, 00128 Roma, Italy; (F.R.); (G.V.); (V.D.)
| |
Collapse
|