1
|
Zhu S, Wang S, Guo S, Wu R, Zhang J, Kong M, Pan L, Gu Y, Yu S. Contrast-Enhanced Mammography Radiomics Analysis for Preoperative Prediction of Breast Cancer Molecular Subtypes. Acad Radiol 2024; 31:2228-2238. [PMID: 38142176 DOI: 10.1016/j.acra.2023.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Predicting breast cancer molecular subtypes can help guide individualised clinical treatment of patients who need the rational preoperative treatment. This study aimed to investigate the efficacy of preoperative prediction of breast cancer molecular subtypes by contrast-enhanced mammography (CEM) radiomic features. METHODS This retrospective two-centre study included women with breast cancer who underwent CEM preoperatively between August 2016 and May 2022. We included 356 patients with 386 lesions, which were grouped into training (n = 162), internal test (n = 160) and external test sets (n = 64). Radiomics features were extracted from low-energy (LE) images and recombined (RC) images and selected. Three dichotomous tasks were established according to postoperative immunohistochemical results: Luminal vs. non-Luminal, human epidermal growth factor receptor (HER2)-enriched vs. non-HER2-enriched, and triple-negative breast cancer (TNBC) vs. non-TNBC. For each dichotomous task, the LE, RC, and LE+RC radiomics models were built by the support vector machine classifier. The prediction performance of the models was assessed by the area under the receiver operating characteristic curve (AUC). Then, the accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were calculated for the models. DeLong's test was utilised to compare the AUCs. RESULTS Radiomics models based on CEM are valuable for predicting breast cancer molecular subtypes. The LE+RC model achieved the best performance in the test set. The LE+RC model predicted Luminal, HER2-enriched, and TNBC subtypes with AUCs of 0.93, 0.89, and 0.87 in the internal test set and 0.82, 0.83, and 0.69 in the external test set, respectively. In addition, the LE model performed more satisfactorily than the RC model. CONCLUSION CEM radiomics features can effectively predict breast cancer molecular subtypes preoperatively, and the LE+RC model has the best predictive performance.
Collapse
Affiliation(s)
- Shuangshuang Zhu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.)
| | - Simin Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China (S.W., Y.G.)
| | - Sailing Guo
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.)
| | - Ruoxi Wu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.)
| | - Jinggang Zhang
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.)
| | - Mengyu Kong
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.)
| | - Liang Pan
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.)
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China (S.W., Y.G.)
| | - Shengnan Yu
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China (S.Z., S.G., R.W., J.Z., M.K., L.P., S.Y.).
| |
Collapse
|
2
|
Is the Level of Contrast Enhancement on Contrast-Enhanced Mammography (CEM) Associated with the Presence and Biological Aggressiveness of Breast Cancer? Diagnostics (Basel) 2023; 13:diagnostics13040754. [PMID: 36832242 PMCID: PMC9955826 DOI: 10.3390/diagnostics13040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
There is limited information about whether the level of enhancement on contrast-enhanced mammography (CEM) can be used to predict malignancy. The purpose of this study was to correlate the level of enhancement with the presence of malignancy and breast cancer (BC) aggressiveness on CEM. This IRB-approved, cross-sectional, retrospective study included consecutive patients examined with CEM for unclear or suspicious findings on mammography or ultrasound. Excluded were examinations performed after biopsy or during neoadjuvant treatment for BC. Three breast radiologists who were blinded to patient data evaluated the images. The enhancement intensity was rated from 0 (no enhancement) to 3 (distinct enhancement). ROC analysis was performed. Sensitivity and negative likelihood ratio (LR-) were calculated after dichotomizing enhancement intensity as negative (0) versus positive (1-3). A total of 156 lesions (93 malignant, 63 benign) in 145 patients (mean age 59 ± 11.6 years) were included. The mean ROC curve was 0.827. Mean sensitivity was 95.4%. Mean LR- was 0.12%. Invasive cancer presented predominantly (61.8%) with distinct enhancement. A lack of enhancement was mainly observed for ductal carcinoma in situ. Stronger enhancement intensity was positively correlated with cancer aggressiveness, but the absence of enhancement should not be used to downgrade suspicious calcifications.
Collapse
|