1
|
Kong L, Tian X, Ji B, Wang J, Liang H, Ji X. Scanner-generated native T1 mapping: a novel approach for assessing myocardial fibrosis in coronary heart disease. Front Cardiovasc Med 2025; 12:1553919. [PMID: 40376144 PMCID: PMC12078203 DOI: 10.3389/fcvm.2025.1553919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
Background To investigate the feasibility of using native longitudinal relaxation time (T1) mapping values, derived from the Picture Archiving and Communication System (PACS), for assessing diffuse myocardial fibrosis in patients with coronary heart disease (CHD). Materials and methods Patients with CHD group were retrospectively enrolled as the experimental group, while age- and sex-matched healthy individuals were included as the control group. Based on the results of late gadolinium enhancement (LGE) sequence from cardiac magnetic resonance (CMR) imaging, the CHD group was further stratified into two subgroups: the LGE positive group (LGE+) and the LGE negative group (LGE-). The correlation between native T1 values and extracellular volume (ECV) values were assessed using the Pearson correlation coefficient. Results A total of 60 patients with coronary heart disease (age 54.03 ± 9.86 years) were included in the analysis, of whom 30 had late gadolinium enhancement (LGE+) and 30 did not (LGE-). The control group consisted of 42 healthy subjects (age 52.14 ± 7.41 years). Compared with the control group, both native T1 and extracellular volume (ECV) values were significantly increased in the CHD group (P < 0.05). The native T1 value was positively correlated with the ECV value (r = 0.711, P < 0.01). In the LGE+ subgroup, native T1 and ECV values were significantly higher than those in the control group (P < 0.001). The area under the receiver operating characteristic curve (AUC) for native T1 was 0.763. The optimal diagnostic threshold for native T1, as measured by the Picture Archiving and Communication System (PACS), was 1,275.50 ms, with a sensitivity of 93.3% and a specificity of 63.3%. Conclusions The diagnostic performance of scanner-generated native T1 Mapping demonstrates robust accuracy and holds potential as a non-invasive tool for evaluating diffuse myocardial fibrosis in patients with CHD.
Collapse
Affiliation(s)
- Li Kong
- Department of Ultrasound, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
| | - Xiaohong Tian
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Ji
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongqin Liang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojuan Ji
- Department of Ultrasound, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
2
|
Olalekan SO, Bakare OO, Okwute PG, Osonuga IO, Adeyanju MM, Edema VB. Hypertrophic cardiomyopathy: insights into pathophysiology and novel therapeutic strategies from clinical studies. Egypt Heart J 2025; 77:5. [PMID: 39776022 PMCID: PMC11706819 DOI: 10.1186/s43044-024-00600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a frequently encountered cardiac condition worldwide, often inherited, and characterized by intricate phenotypic and genetic manifestations. The natural progression of HCM is diverse, largely due to mutations in the contractile and relaxation proteins of the heart. These mutations disrupt the normal structure and functioning of the heart muscle, particularly affecting genes that encode proteins involved in the contraction and relaxation of cardiac muscle. MAIN BODY This review focused on understanding the role of contractile and relaxation proteins in the pathogenesis of hypertrophic cardiomyopathy. Mutations in contractile proteins such as myosin, actin, tropomyosin, and troponin are associated with hypercontractility and increased sensitivity of the heart muscle, leading to HCM. Additionally, impaired relaxation of the heart muscle, linked to abnormalities in proteins like phospholamban, sarcolipin, titin, myosin binding protein-C, and calsequestrin, contributes significantly to the disease. The review also explored the impact of targeted therapeutic approaches aimed at modulating these proteins to improve patient outcomes. Recent advances in therapeutic strategies, including novel pharmacological agents like mavacamten and aficamten, were examined for their potential to help patients manage the disease and lead more accommodating lifestyles. CONCLUSIONS The review underscored the significance of early diagnosis and personalized treatment approaches in managing HCM. Future research should prioritize the development of robust biomarkers for early detection and risk stratification, particularly in diverse populations, to enhance clinical outcomes. Furthermore, it is imperative to delve deeper into the genetic mutations and molecular mechanisms associated with HCM, with a focus on exploring the roles of less-studied myocardial relaxation proteins and their interactions with sarcomere constituents.
Collapse
Affiliation(s)
- Samuel Oluwadare Olalekan
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria.
| | | | | | - Ifabunmi Oduyemi Osonuga
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Muinat Moronke Adeyanju
- Department of Biochemistry, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Victoria Biola Edema
- Department of Physiology, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| |
Collapse
|
3
|
Zhi Y, Gui FD, Xue M, Long YT, Miao W, Yi Y, Gao LC, Bing F, Pan SY. Focal ischemic myocardial fibrosis assessed by late gadolinium enhancement cardiovascular magnetic resonance in patients with hypertrophic cardiomyopathy. BMC Cardiovasc Disord 2024; 24:203. [PMID: 38594610 PMCID: PMC11003119 DOI: 10.1186/s12872-024-03859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND In patients with hypertrophic cardiomyopathy (HCM), ischemic myocardial fibrosis assessed by late gadolinium enhancement (I-LGE) using cardiovascular magnetic resonance (CMR) have been reported. However, the clinical significance of I-LGE has not been completely understood. We aim to evaluate the I-LGE differ phenotypically from HCM without LGE or nonischemic myocardial fibrosis assessed by late gadolinium enhancement (NI-LGE) in the left ventricle (LV). METHODS The patients with HCM whom was underwent CMR were enrolled, using cine cardiac magnetic resonance to evaluate LV function and LGE to detect the myocardial fibrosis. Three groups were assorted: 1) HCM without LGE; 2) HCM with LGE involved the subendocardial layer was defined as I-LGE; 3) HCM with LGE not involved the subendocardial layer was defined as NI-LGE. RESULTS We enrolled 122 patients with HCM in the present study. LGE was detected in 58 of 122 (48%) patients with HCM, and 22 (18%) of patients reported I-LGE. HCM with I-LGE had increased higher left ventricular mass index (LVMI) (P < 0.0001) than HCM with NI-LGE or without LGE. In addition, HCM with I-LGE had a larger LV end- systolic volume (P = 0.045), lower LV ejection fraction (LVEF) (P = 0.026), higher LV myocardial mass (P < 0.001) and thicker LV wall (P < 0.001) more than HCM without LGE alone. The I-LGE were significantly associated with LVEF (OR: 0.961; P = 0.016), LV mass (OR: 1.028; P < 0.001), and maximal end-diastolic LVWT (OR: 1.567; P < 0.001). On multivariate analysis, LVEF (OR: 0.948; P = 0.013) and maximal end-diastolic LVWT (OR: 1.548; P = 0.001) were associated with higher risk for I-LGE compared to HCM without LGE. Noticeably, the maximal end-diastolic LVWT (OR: 1.316; P = 0.011) was the only associated with NI-LGE compared to HCM without LGE. CONCLUSIONS I-LGE is not uncommon in patients with HCM. HCM with I-LGE was associated with significant LV hypertrophy, extensive LGE and poor LV ejection fraction. We should consider focal ischemic myocardial fibrosis when applying LGE to risk stratification for HCM.
Collapse
Affiliation(s)
- Yang Zhi
- Department of Radiology, Chengdu Fifth People's Hospital, 33# Ma Shi Street, Chengdu, 611130, China
| | - Fu-Dan Gui
- Department of Cardiology, Chengdu Fifth People's Hospital, 33# Ma Shi Street, Chengdu, 611130, China
| | - Meng Xue
- Department of Radiology, Chengdu Fifth People's Hospital, 33# Ma Shi Street, Chengdu, 611130, China
| | - Yi-Tian Long
- Department of Radiology, Chengdu Fifth People's Hospital, 33# Ma Shi Street, Chengdu, 611130, China
| | - Wen Miao
- Department of Radiology, Chengdu Fifth People's Hospital, 33# Ma Shi Street, Chengdu, 611130, China
| | - You Yi
- Department of Radiology, Chengdu Fifth People's Hospital, 33# Ma Shi Street, Chengdu, 611130, China
| | - Liang-Chao Gao
- Department of Rheumatology and Immunology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Fu Bing
- Department of Radiology, Chengdu Fifth People's Hospital, 33# Ma Shi Street, Chengdu, 611130, China.
| | - Shu-Yue Pan
- Department of Rheumatology and Immunology, Chengdu Fifth People's Hospital, Chengdu, China.
| |
Collapse
|
4
|
Negri F, Sanna GD, Di Giovanna G, Cittar M, Grilli G, De Luca A, Dal Ferro M, Baracchini N, Burelli M, Paldino A, Del Franco A, Pradella S, Todiere G, Olivotto I, Imazio M, Sinagra G, Merlo M. Cardiac Magnetic Resonance Feature-Tracking Identifies Preclinical Abnormalities in Hypertrophic Cardiomyopathy Sarcomere Gene Mutation Carriers. Circ Cardiovasc Imaging 2024; 17:e016042. [PMID: 38563190 DOI: 10.1161/circimaging.123.016042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Assessing myocardial strain by cardiac magnetic resonance feature tracking (FT) has been found to be useful in patients with overt hypertrophic cardiomyopathy (HCM). Little is known, however, of its role in sarcomere gene mutation carriers without overt left ventricular hypertrophy (subclinical HCM). METHODS Thirty-eight subclinical HCM subjects and 42 healthy volunteers were enrolled in this multicenter case-control study. They underwent a comprehensive cardiac magnetic resonance study. Two-dimensional global radial, circumferential, and longitudinal strain of the left ventricle (LV) were evaluated by FT analysis. RESULTS The subclinical HCM sample was 41 (22-51) years old and 32% were men. FT analysis revealed a reduction in global radial strain (29±7.2 versus 47.9±7.4; P<0.0001), global circumferential strain (-17.3±2.6 -versus -20.8±7.4; P<0.0001) and global longitudinal strain (-16.9±2.4 versus -20.5±2.6; P<0.0001) in subclinical HCM compared with control subjects. The significant differences persisted when considering the 23 individuals free of all the structural and functional ECG and cardiac magnetic resonance abnormalities previously described. Receiver operating characteristic curve analyses showed that the differential diagnostic performances of FT in discriminating subclinical HCM from normal subjects were good to excellent (global radial strain with optimal cut-off value of 40.43%: AUC, 0.946 [95% CI, 0.93-1.00]; sensitivity 90.48%, specificity 94.44%; global circumferential strain with cut-off, -18.54%: AUC, 0.849 [95% CI, 0.76-0.94]; sensitivity, 88.10%; specificity, 72.22%; global longitudinal strain with cut-off, -19.06%: AUC, 0.843 [95% CI, 0.76-0.93]; sensitivity, 78.57%; specificity, 78.95%). Similar values were found for discriminating those subclinical HCM subjects without other phenotypic abnormalities from healthy volunteers (global radial strain with optimal cut-off 40.43%: AUC, 0.966 [95% CI, 0.92-1.00]; sensitivity, 90.48%; specificity, 95.45%; global circumferential strain with cut-off, -18.44%: AUC, 0.866 [95% CI, 0.76-0.96]; sensitivity, 92.86%; specificity, 77.27%; global longitudinal strain with cut-off, -17.32%: AUC, 0.838 [95% CI, 0.73-0.94]; sensitivity, 90.48%; specificity, 65.22%). CONCLUSIONS Cardiac magnetic resonance FT-derived parameters are consistently lower in subclinical patients with HCM, and they could emerge as a good tool for discovering the disease during a preclinical phase.
Collapse
Affiliation(s)
- Francesco Negri
- Cardiology Department, University Hospital "Santa Maria della Misericordia," Azienda Sanitaria Universitaria Integrata Friuli Centrale, Udine, Italy (F.N., M.I.)
| | | | - Giulia Di Giovanna
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Marco Cittar
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Giulia Grilli
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Antonio De Luca
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Matteo Dal Ferro
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Nikita Baracchini
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Massimo Burelli
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Alessia Paldino
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Annamaria Del Franco
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy (A.D.F., I.O.)
| | - Silvia Pradella
- Department of Emergency Radiology, University Hospital Careggi, Florence (Italy) (S.P.)
| | | | - Iacopo Olivotto
- Cardiomyopathy Unit, Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy (A.D.F., I.O.)
- Department of Experimental and Clinical Medicine, Meyer Children's Hospital, University of Florence, Italy (I.O.)
| | - Massimo Imazio
- Cardiology Department, University Hospital "Santa Maria della Misericordia," Azienda Sanitaria Universitaria Integrata Friuli Centrale, Udine, Italy (F.N., M.I.)
- Department of Medicine, University of Udine, Italy (M.I.)
| | - Gianfranco Sinagra
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| | - Marco Merlo
- Cardiovascular Department, Centre for Diagnosis and Management of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Italy (G.d.G., M.C., G.G., A.D.L., M.d.F., N.B., M.B., A.P., G.S., M.M.)
| |
Collapse
|