1
|
Kobayashi N, Nakaura T, Yoshida N, Nagayama Y, Kidoh M, Uetani H, Sakabe D, Kawamata Y, Funama Y, Tsutsumi T, Hirai T. Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis. Eur Radiol 2025; 35:3499-3507. [PMID: 39613960 DOI: 10.1007/s00330-024-11212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data. METHODS We retrospectively analyzed scan data of adult patients who underwent body CT during two periods relative to DLR implementation at our facility: a 12-month pre-DLR phase (n = 5553) using hybrid iterative reconstruction and a 12-month post-DLR phase (n = 5494) with routine CT reconstruction transitioning to DLR. To ensure comparability between two groups, we employed propensity score matching 1:1 based on age, sex, and body mass index. Dose data were collected to estimate organ-specific equivalent doses and total effective doses. We assessed the average dose reduction post-DLR implementation and estimated the Lifetime Attributable Risk (LAR) for cancer per CT exam pre- and post-DLR implementation. The number of radiation-induced cancers before and after the implementation of DLR was also estimated. RESULTS After propensity score matching, 5247 cases from each group were included in the final analysis. Post-DLR, the total effective body CT dose significantly decreased to 15.5 ± 10.3 mSv from 28.1 ± 14.0 mSv pre-DLR (p < 0.001), a 45% reduction. This dose reduction significantly lowered the radiation-induced cancer risk, especially among younger women, with the estimated annual cancer incidence from 0.247% pre-DLR to 0.130% post-DLR. CONCLUSION The implementation of DLR has the possibility to reduce radiation dose by 45% and the risk of radiation-induced cancer from 0.247 to 0.130% as compared with the iterative reconstruction. KEY POINTS Question Can implementing deep learning reconstruction (DLR) in routine CT scans significantly reduce radiation dose and the risk of radiation-induced cancer compared to hybrid iterative reconstruction? Findings DLR reduced the total effective body CT dose by 45% (from 28.1 ± 14.0 mSv to 15.5 ± 10.3 mSv) and decreased estimated cancer incidence from 0.247 to 0.130%. Clinical relevance Adopting DLR in clinical practice substantially lowers radiation exposure and cancer risk from CT exams, enhancing patient safety, especially for younger women, and underscores the importance of advanced imaging techniques.
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan.
| | - Naofumi Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yuki Kawamata
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshinori Funama
- Department of Medical Physics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Takashi Tsutsumi
- Disease Applied Research Department, Research and Development Center, Canon Medical Systems, Otawara, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| |
Collapse
|
2
|
Tamura A, Mukaida E, Ota Y, Abe S, Orii M, Ieko Y, Yoshioka K. Evaluation of SR-DLR in low-dose abdominal CT: superior image quality and noise reduction. Abdom Radiol (NY) 2025; 50:2321-2332. [PMID: 39560744 DOI: 10.1007/s00261-024-04686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVES To evaluate the effectiveness of super-resolution deep learning reconstruction (SR-DLR) in low-dose abdominal computed tomography (CT) imaging compared with hybrid iterative reconstruction (HIR) and conventional deep learning reconstruction (cDLR) algorithms. METHODS We retrospectively analyzed abdominal CT scans performed using a low-dose protocol. Three different image reconstruction algorithms-HIR, cDLR, and SR-DLR-were applied to the same raw image data. Objective evaluations included noise magnitude and contrast-to-noise ratio (CNR), as well as noise power spectrum (NPS) and edge rise slope (ERS). Subjective evaluations were performed by radiologists, who assessed image quality in terms of noise, artifacts, sharpness, and overall diagnostic utility. RESULTS Raw CT image data were obtained from 35 patients (mean CTDIvol 11.0 mGy; mean DLP 344.8 mGy/cm). cDLR yielded the lowest noise levels and highest CNR (p < 0.001). However, SR-DLR outperformed cDLR in terms of noise texture and resolution, achieving the lowest NPS peak and highest ERS (p < 0.001 and p = 0.005, respectively). Subjectively, SR-DLR was rated highest across all categories, including noise, artifacts, sharpness, and overall image quality, with statistically significant differences compared to cDLR and HIR (p < 0.001). CONCLUSION SR-DLR was the most effective reconstruction algorithm for low-dose abdominal CT imaging, offering superior image quality and noise reduction compared to cDLR and HIR. This suggests that SR-DLR can enhance the reliability and diagnostic accuracy of abdominal imaging, particularly in low-dose settings, making it a valuable tool in clinical practice.
Collapse
Affiliation(s)
- Akio Tamura
- Iwate Medical University School of Medicine, Shiwa-gun, Japan.
| | - Eisuke Mukaida
- Iwate Medical University School of Medicine, Shiwa-gun, Japan
| | | | - Shun Abe
- Iwate Medical University Hospital, Shiwa-gun, Japan
| | - Makoto Orii
- Iwate Medical University School of Medicine, Shiwa-gun, Japan
| | - Yoshiro Ieko
- Iwate Medical University School of Medicine, Shiwa-gun, Japan
| | | |
Collapse
|
3
|
Nagayama Y, Ishiuchi S, Inoue T, Funama Y, Shigematsu S, Emoto T, Sakabe D, Ueda H, Chiba Y, Ito Y, Kidoh M, Oda S, Nakaura T, Hirai T. Super-resolution deep-learning reconstruction with 1024 matrix improves CT image quality for pancreatic ductal adenocarcinoma assessment. Eur J Radiol 2025; 184:111953. [PMID: 39908936 DOI: 10.1016/j.ejrad.2025.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVES To evaluate the efficiency of super-resolution deep-learning reconstruction (SR-DLR) optimized for helical body imaging in assessing pancreatic ductal adenocarcinoma (PDAC) using normal-resolution (NR) CT scanner. METHODS Fifty patients with PDAC who underwent multiphase pancreas CT on a 320-row NR scanner were retrospectively analyzed. Images were reconstructed using hybrid iterative reconstruction (HIR), normal-resolution deep-learning reconstruction (NR-DLR), and SR-DLR at a 0.5-mm slice thickness. The matrix size was 512 × 512 for HIR and NR-DLR, and 1024 × 1024 for SR-DLR. Image noise and contrast-to-noise ratio (CNR) of pancreas, superior mesenteric artery, portal vein, and PDAC were quantified. Noise power spectrum (NPS) in the liver and edge rise slope (ERS) at the pancreas, artery, and vein were used to quantify noise properties and edge sharpness. Subjective evaluations included rankings of image sharpness, noise magnitude, texture fineness, and delineation of PDAC, pancreas margin, pancreatic duct, peripancreatic vessels, and hepatic lesions (1 = worst; 3 = best among three image series). Overall diagnostic quality was rated on a 5-point scale (1 = undiagnostic, 5 = excellent). RESULTS SR-DLR showed significantly lower image noise and higher CNR than HIR and NR-DLR (all, p < 0.001). NPS analysis revealed no significant difference in average spatial frequency between SR-DLR and NR-DLR (p = 0.770), both being higher than HIR (both, p < 0.001). ERS values of all structures were highest with SR-DLR (p < 0.001). SR-DLR received the highest subjective scores for all criteria, with significant differences from HIR and NR-DLR (all, p < 0.001). CONCLUSION SR-DLR improved both subjective and objective image quality, enhancing the delineation of all structures relevant to PDAC assessment using NR CT scanner.
Collapse
Affiliation(s)
- Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Soichiro Ishiuchi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Taihei Inoue
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Shinsuke Shigematsu
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takafumi Emoto
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroko Ueda
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550, Japan
| | - Yutaka Chiba
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550, Japan
| | - Yuya Ito
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi 324-8550, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Zhang F, Peng L, Zhang G, Xie R, Sun M, Su T, Ge Y. Artificial Intelligence Iterative Reconstruction for Dose Reduction in Pediatric Chest CT: A Clinical Assessment via Below 3 Years Patients With Congenital Heart Disease. J Thorac Imaging 2025:00005382-990000000-00166. [PMID: 40013381 DOI: 10.1097/rti.0000000000000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
PURPOSE To assess the performance of a newly introduced deep learning-based reconstruction algorithm, namely the artificial intelligence iterative reconstruction (AIIR), in reducing the dose of pediatric chest CT by using the image data of below 3-year-old patients with congenital heart disease (CHD). MATERIALS AND METHODS The lung image available from routine-dose cardiac CT angiography (CTA) on below 3 years patients with CHD was employed as a reference for evaluating the paired low-dose chest CT. A total of 191 subjects were prospectively enrolled, where the dose for chest CT was reduced to ~0.1 mSv while the cardiac CTA protocol was kept unchanged. The low-dose chest CT images, obtained with the AIIR and the hybrid iterative reconstruction (HIR), were compared in image quality, ie, overall image quality and lung structure depiction, and in diagnostic performance, ie, severity assessment of pneumonia and airway stenosis. RESULTS Compared with the reference, lung image quality was not found significantly different on low-dose AIIR images (all P>0.05) but obviously inferior with the HIR (all P<0.05). Compared with the HIR, low-dose AIIR images also achieved a closer pneumonia severity index (AIIR 4.32±3.82 vs. Ref 4.37±3.84, P>0.05; HIR 5.12±4.06 vs. Ref 4.37±3.84, P<0.05) and airway stenosis grading (consistently graded: AIIR 88.5% vs. HIR 56.5% ) to the reference. CONCLUSIONS AIIR has the potential for large dose reduction in chest CT of patients below 3 years of age while preserving image quality and achieving diagnostic results nearly equivalent to routine dose scans.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Radiology
- Henan Key Laboratory for Cardiology Imaging Medicine, Fuwai Central China Cardiovascular Hospital, Fuwai, Zhengdong, Zhengzhou
| | | | | | - Ruigang Xie
- Department of Radiology
- Henan Key Laboratory for Cardiology Imaging Medicine, Fuwai Central China Cardiovascular Hospital, Fuwai, Zhengdong, Zhengzhou
| | - Minghua Sun
- Department of Radiology
- Henan Key Laboratory for Cardiology Imaging Medicine, Fuwai Central China Cardiovascular Hospital, Fuwai, Zhengdong, Zhengzhou
| | - Tao Su
- Department of Radiology
- Henan Key Laboratory for Cardiology Imaging Medicine, Fuwai Central China Cardiovascular Hospital, Fuwai, Zhengdong, Zhengzhou
| | - Yinghui Ge
- Department of Radiology
- Henan Key Laboratory for Cardiology Imaging Medicine, Fuwai Central China Cardiovascular Hospital, Fuwai, Zhengdong, Zhengzhou
| |
Collapse
|
5
|
Boubaker F, Eliezer M, Poillon G, Wurtz H, Puel U, Blum A, Gillet P, Teixeira PAG, Parietti-Winkler C, Gillet R. Ultra-high-resolution CT of the temporal bone: Technical aspects, current applications and future directions. Diagn Interv Imaging 2025:S2211-5684(25)00029-4. [PMID: 39984415 DOI: 10.1016/j.diii.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Temporal bone imaging has historically suffered from spatial resolution issues because the spatial resolution of conventional high-resolution computed tomography (CT) is 0.5 mm, while the smallest structure of the middle ear, the stapes, has very thin components, as thin as 0.19 mm, and small structures, such as small channels containing nerves and arteries, have historically been beyond its spatial resolution. Photon-counting and ultra-high resolution CT allow for improved spatial resolution and reduced radiation dose compared to conventional high-resolution CT. This article provides a technical approach to understanding the technical aspects of these new techniques and an updated description of the middle and inner ear, as well as a practical approach to understanding the normal and pathologic anatomy of the temporal bone in the light of ultra-high resolution imaging techniques.
Collapse
Affiliation(s)
- Fatma Boubaker
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France
| | - Michael Eliezer
- Department of Radiology, Hôpital National des Quinze-Vingts, 75012 Paris, France
| | - Guillaume Poillon
- Department of Neuroradiology, Fondation Alfred de Rothschild Hospital, 75019 Paris, France
| | - Helene Wurtz
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France
| | - Ulysse Puel
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000 Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France
| | - Alain Blum
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000 Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France
| | | | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000 Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France
| | - Cécile Parietti-Winkler
- ENT Surgery Department, Central Hospital, University Hospital Center of Nancy, 54000 Nancy, France
| | - Romain Gillet
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000 Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France.
| |
Collapse
|
6
|
Ye K, Xu L, Pan B, Li J, Li M, Yuan H, Gong NJ. Deep learning-based image domain reconstruction enhances image quality and pulmonary nodule detection in ultralow-dose CT with adaptive statistical iterative reconstruction-V. Eur Radiol 2025:10.1007/s00330-024-11317-y. [PMID: 39792163 DOI: 10.1007/s00330-024-11317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES To evaluate the image quality and lung nodule detectability of ultralow-dose CT (ULDCT) with adaptive statistical iterative reconstruction-V (ASiR-V) post-processed using a deep learning image reconstruction (DLIR)-based image domain compared to low-dose CT (LDCT) and ULDCT without DLIR. MATERIALS AND METHODS A total of 210 patients undergoing lung cancer screening underwent LDCT (mean ± SD, 0.81 ± 0.28 mSv) and ULDCT (0.17 ± 0.03 mSv) scans. ULDCT images were reconstructed with ASiR-V (ULDCT-ASiR-V) and post-processed using DLIR (ULDCT-DLIR). The quality of the three CT images was analyzed. Three radiologists detected and measured pulmonary nodules on all CT images, with LDCT results serving as references. Nodule conspicuity was assessed using a five-point Likert scale, followed by further statistical analyses. RESULTS A total of 463 nodules were detected using LDCT. The image noise of ULDCT-DLIR decreased by 60% compared to that of ULDCT-ASiR-V and was lower than that of LDCT (p < 0.001). The subjective image quality scores for ULDCT-DLIR (4.4 [4.1, 4.6]) were also higher than those for ULDCT-ASiR-V (3.6 [3.1, 3.9]) (p < 0.001). The overall nodule detection rates for ULDCT-ASiR-V and ULDCT-DLIR were 82.1% (380/463) and 87.0% (403/463), respectively (p < 0.001). The percentage difference between diameters > 1 mm was 2.9% (ULDCT-ASiR-V vs. LDCT) and 0.5% (ULDCT-DLIR vs. LDCT) (p = 0.009). Scores of nodule imaging sharpness on ULDCT-DLIR (4.0 ± 0.68) were significantly higher than those on ULDCT-ASiR-V (3.2 ± 0.50) (p < 0.001). CONCLUSION DLIR-based image domain improves image quality, nodule detection rate, nodule imaging sharpness, and nodule measurement accuracy of ASiR-V on ULDCT. KEY POINTS Question Deep learning post-processing is simple and cheap compared with raw data processing, but its performance is not clear on ultralow-dose CT. Findings Deep learning post-processing enhanced image quality and improved the nodule detection rate and accuracy of nodule measurement of ultralow-dose CT. Clinical relevance Deep learning post-processing improves the practicability of ultralow-dose CT and makes it possible for patients with less radiation exposure during lung cancer screening.
Collapse
Affiliation(s)
- Kai Ye
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Libo Xu
- Laboratory for Intelligent Medical Imaging, Tsinghua Cross-strait Research Institute, Xiamen, China
| | | | - Jie Li
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Meijiao Li
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China.
| | - Nan-Jie Gong
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China.
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, China.
| |
Collapse
|
7
|
Crotty E, Singh A, Neligan N, Chamunyonga C, Edwards C. Artificial intelligence in medical imaging education: Recommendations for undergraduate curriculum development. Radiography (Lond) 2024; 30 Suppl 2:67-73. [PMID: 39454460 DOI: 10.1016/j.radi.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVES Artificial intelligence (AI) is rapidly being integrated into medical imaging practice, prompting calls to enhance AI education in undergraduate radiography programs. Combining evidence from literature, practitioner insights, and industry perspectives, this paper provides recommendations for medical imaging undergraduate education, including curriculum revision and re-alignment. KEY FINDINGS A proposed modular framework is outlined to assist course providers in integrating AI into university programs. An example course design includes modules on data science fundamentals, machine learning, AI ethics and patient safety, governance and regulation, AI tool evaluation, and clinical applications. A proposal to embed these longitudinally in the curriculum combined with hands-on experience and work-integrated learning will help develop the necessary knowledge of AI and its real-world impacts. Authentic assessment examples reinforce learning, such as critically appraising published research and reflecting on current technologies. Maintenance of an up-to-date curriculum will require a collaborative, multidisciplinary approach involving educators, clinicians, and industry professionals. CONCLUSION Integrating AI education into undergraduate medical imaging programs equips future radiographers in an evolving technological landscape. A strategic approach to embedding AI modules throughout degree programs assures students a comprehensive understanding of AI principles, skills in utilising AI tools effectively, and the ability to critically evaluate their implications. IMPLICATIONS FOR PRACTICE The practical implementation of undergraduate AI education will prepare radiographers to incorporate these technologies while assuring patient care.
Collapse
Affiliation(s)
- E Crotty
- Queensland University of Technology, School of Clinical Sciences, Faculty of Health, Brisbane, QLD, Australia
| | - A Singh
- Queensland University of Technology, School of Clinical Sciences, Faculty of Health, Brisbane, QLD, Australia
| | - N Neligan
- Queensland University of Technology, School of Clinical Sciences, Faculty of Health, Brisbane, QLD, Australia
| | - C Chamunyonga
- Queensland University of Technology, School of Clinical Sciences, Faculty of Health, Brisbane, QLD, Australia
| | - C Edwards
- Queensland University of Technology, School of Clinical Sciences, Faculty of Health, Brisbane, QLD, Australia; Department of Medical Imaging, Redcliffe Hospital, Redcliffe, QLD, Australia.
| |
Collapse
|
8
|
Yoshida K, Nagayama Y, Funama Y, Ishiuchi S, Motohara T, Masuda T, Nakaura T, Ishiko T, Hirai T, Beppu T. Low tube voltage and deep-learning reconstruction for reducing radiation and contrast medium doses in thin-slice abdominal CT: a prospective clinical trial. Eur Radiol 2024; 34:7386-7396. [PMID: 38753193 DOI: 10.1007/s00330-024-10793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES To investigate the feasibility of low-radiation dose and low iodinated contrast medium (ICM) dose protocol combining low-tube voltage and deep-learning reconstruction (DLR) algorithm in thin-slice abdominal CT. METHODS This prospective study included 148 patients who underwent contrast-enhanced abdominal CT with either 120-kVp (600 mgL/kg, n = 74) or 80-kVp protocol (360 mgL/kg, n = 74). The 120-kVp images were reconstructed using hybrid iterative reconstruction (HIR) (120-kVp-HIR), while 80-kVp images were reconstructed using HIR (80-kVp-HIR) and DLR (80-kVp-DLR) with 0.5 mm thickness. Size-specific dose estimate (SSDE) and iodine dose were compared between protocols. Image noise, CT attenuation, and contrast-to-noise ratio (CNR) were quantified. Noise power spectrum (NPS) and edge rise slope (ERS) were used to evaluate noise texture and edge sharpness, respectively. The subjective image quality was rated on a 4-point scale. RESULTS SSDE and iodine doses of 80-kVp were 40.4% (8.1 ± 0.9 vs. 13.6 ± 2.7 mGy) and 36.3% (21.2 ± 3.9 vs. 33.3 ± 4.3 gL) lower, respectively, than those of 120-kVp (both, p < 0.001). CT attenuation of vessels and solid organs was higher in 80-kVp than in 120-kVp images (all, p < 0.001). Image noise of 80-kVp-HIR and 80-kVp-DLR was higher and lower, respectively than that of 120-kVp-HIR (both p < 0.001). The highest CNR and subjective scores were attained in 80-kVp-DLR (all, p < 0.001). There were no significant differences in average NPS frequency and ERS between 120-kVp-HIR and 80-kVp-DLR (p ≥ 0.38). CONCLUSION Compared with the 120-kVp-HIR protocol, the combined use of 80-kVp and DLR techniques yielded superior subjective and objective image quality with reduced radiation and ICM doses at thin-section abdominal CT. CLINICAL RELEVANCE STATEMENT Scanning at low-tube voltage (80-kVp) combined with the deep-learning reconstruction algorithm may enhance diagnostic efficiency and patient safety by improving image quality and reducing radiation and contrast doses of thin-slice abdominal CT. KEY POINTS Reducing radiation and iodine doses is desirable; however, contrast and noise degradation can be detrimental. The 80-kVp scan with the deep-learning reconstruction technique provided better images with lower radiation and contrast doses. This technique may be efficient for improving diagnostic confidence and patient safety in thin-slice abdominal CT.
Collapse
Affiliation(s)
- Kenichiro Yoshida
- Department of Radiology, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Soichiro Ishiuchi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toshihiko Motohara
- Department of Gastroenterology, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Toshiro Masuda
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takatoshi Ishiko
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toru Beppu
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| |
Collapse
|
9
|
Emoto T, Nagayama Y, Takada S, Sakabe D, Shigematsu S, Goto M, Nakato K, Yoshida R, Harai R, Kidoh M, Oda S, Nakaura T, Hirai T. Super-resolution deep-learning reconstruction for cardiac CT: impact of radiation dose and focal spot size on task-based image quality. Phys Eng Sci Med 2024; 47:1001-1014. [PMID: 38884668 DOI: 10.1007/s13246-024-01423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/04/2024] [Indexed: 06/18/2024]
Abstract
This study aimed to evaluate the impact of radiation dose and focal spot size on the image quality of super-resolution deep-learning reconstruction (SR-DLR) in comparison with iterative reconstruction (IR) and normal-resolution DLR (NR-DLR) algorithms for cardiac CT. Catphan-700 phantom was scanned on a 320-row scanner at six radiation doses (small and large focal spots at 1.4-4.3 and 5.8-8.8 mGy, respectively). Images were reconstructed using hybrid-IR, model-based-IR, NR-DLR, and SR-DLR algorithms. Noise properties were evaluated through plotting noise power spectrum (NPS). Spatial resolution was quantified with task-based transfer function (TTF); Polystyrene, Delrin, and Bone-50% inserts were used for low-, intermediate, and high-contrast spatial resolution. The detectability index (d') was calculated. Image noise, noise texture, edge sharpness of low- and intermediate-contrast objects, delineation of fine high-contrast objects, and overall quality of four reconstructions were visually ranked. Results indicated that among four reconstructions, SR-DLR yielded the lowest noise magnitude and NPS peak, as well as the highest average NPS frequency, TTF50%, d' values, and visual rank at each radiation dose. For all reconstructions, the intermediate- to high-contrast spatial resolution was maximized at 4.3 mGy, while the lowest noise magnitude and highest d' were attained at 8.8 mGy. SR-DLR at 4.3 mGy exhibited superior noise performance, intermediate- to high-contrast spatial resolution, d' values, and visual rank compared to the other reconstructions at 8.8 mGy. Therefore, SR-DLR may yield superior diagnostic image quality and facilitate radiation dose reduction compared to the other reconstructions, particularly when combined with small focal spot scanning.
Collapse
Affiliation(s)
- Takafumi Emoto
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| | - Sentaro Takada
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Shinsuke Shigematsu
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Makoto Goto
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Kengo Nakato
- Department of Central Radiology, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Ryuya Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Ryota Harai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
10
|
Chen Y, Huang Z, Feng L, Zou W, Kong D, Zhu D, Dai G, Zhao W, Zhang Y, Luo M. Deep Learning-Based Reconstruction Improves the Image Quality of Low-Dose CT Colonography. Acad Radiol 2024; 31:3191-3199. [PMID: 38290889 DOI: 10.1016/j.acra.2024.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
RATIONALE AND OBJECTIVES To evaluate the image quality of low-dose CT colonography (CTC) using deep learning-based reconstruction (DLR) compared to iterative reconstruction (IR). MATERIALS AND METHODS Adults included in the study were divided into four groups according to body mass index (BMI). Routine-dose (RD: 120 kVp) CTC images were reconstructed with IR (RD-IR); low-dose (LD: 100kVp) images were reconstructed with IR (LD-IR) and DLR (LD-DLR). The subjective image quality was rated on a 5-point scale by two radiologists independently. The parameters for objective image quality included noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The Friedman test was used to compare the image quality among RD-IR, LD-IR and LD-DLR. The KruskalWallis test was used to compare the results among different BMI groups. RESULTS A total of 270 volunteers (mean age: 47.94 years ± 11.57; 115 men) were included. The effective dose of low-dose CTC was decreased by approximately 83.18% (5.18mSv ± 0.86 vs. 0.86mSv ± 0.05, P < 0.001). The subjective image quality score of LD-DLR was superior to that of LD-IR (3.61 ± 0.56 vs. 2.70 ± 0.51, P < 0.001) and on par with the RD- IR's (3.61 ± 0.56 vs. 3.74 ± 0.52, P = 0.486). LD-DLR exhibited the lowest noise, and the maximum SNR and CNR compared to RD-IR and LD-IR (all P < 0.001). No statistical difference was found in the noise of LD-DLR images between different BMI groups (all P > 0.05). CONCLUSION Compared to IR, DLR provided low-dose CTC with superior image quality at an average radiation dose of 0.86mSv, which may be promising in future colorectal cancer screening.
Collapse
Affiliation(s)
- Yanshan Chen
- Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Department of Radiology, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, China (Y.C.)
| | - Zixuan Huang
- Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Department of Radiology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China (Z.H.)
| | - Lijuan Feng
- Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China (L.F.)
| | - Wenbin Zou
- Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.)
| | - Decan Kong
- Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.)
| | - Dongyun Zhu
- Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.)
| | - Guochao Dai
- Medical Imaging Center, the First People's Hospital of Kashi Area, Kashi, Xinjiang 844000, China (G.D.)
| | - Weidong Zhao
- Department of Radiology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China (W.Z.)
| | - Yuanke Zhang
- School of Computer Science, Qufu Normal University, Rizhao, Shandong 276826, China (Y.Z.)
| | - Mingyue Luo
- Department of Radiology, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.); Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China (Y.C., Z.H., L.F., W.Z., D.K., D.Z., M.L.).
| |
Collapse
|
11
|
Ma G, Dou Y, Dang S, Yu N, Guo Y, Han D, Fan Q. Improving Image Quality and Nodule Characterization in Ultra-low-dose Lung CT with Deep Learning Image Reconstruction. Acad Radiol 2024; 31:2944-2952. [PMID: 38429189 DOI: 10.1016/j.acra.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024]
Abstract
RATIONALE AND OBJECTIVE To investigate the influence of the deep learning image reconstruction (DLIR) on the image quality and quantitative analysis of pulmonary nodules under ultra-low dose lung CT conditions. MATERIALS AND METHODS This was a prospective study with patient consent and included 56 patients with suspected pulmonary nodules. Patients were examined by both standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT). SDCT images were reconstructed with adaptive statistical iterative reconstruction-V 40% (ASIR-V40%) (group A), while ULDCT images were reconstructed using ASIR-V40% (group B) and high-strength DLIR (DLIR-H) (group C). The three image sets were analyzed using a commercial computer aided diagnosis (CAD) software. Parameters such as nodule length, width, density, volume, risk, and classification were measured. The CAD quantitative data of different nodule types (solid, calcified, and subsolid nodules) and nodule image quality scores evaluated by two physicians on a 5-point scale were compared. RESULT The radiation dose in ULDCT was 0.25 ± 0.08mSv, 7.2% that of the 3.48 ± 1.08mSv in SDCT (P < 0.001). 104 pulmonary nodules were detected (51/53 solid, 26/24 calcified and 27/27 subsolid in Groups A and (B&C), respectively). Group B had lower density for solid, calcified nodules, and lower volume and risk for subsolid nodules than Group A, while Group C had lower density for calcified nodules (P < 0.05), There were no significant differences in other parameters among the three groups (P > 0.05). Group A and C had similar image quality for nodules and were higher than Group B (P < 0.05). CONCLUSION DLIR-H significantly improves image quality than ASIR-V40% and maintains similar nodule detection and characterization with CAD in ULDCT compared to SDCT.
Collapse
Affiliation(s)
- Guangming Ma
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yuequn Dou
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Shan Dang
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Nan Yu
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Yanbing Guo
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Dong Han
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Qiuju Fan
- Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
12
|
D'hondt L, Franck C, Kellens PJ, Zanca F, Buytaert D, Van Hoyweghen A, Addouli HE, Carpentier K, Niekel M, Spinhoven M, Bacher K, Snoeckx A. Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT. Cancer Imaging 2024; 24:60. [PMID: 38720391 PMCID: PMC11080267 DOI: 10.1186/s40644-024-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable. MATERIALS AND METHODS A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models. RESULTS Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR. CONCLUSION We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.
Collapse
Affiliation(s)
- L D'hondt
- Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium.
- Faculty of Medicine, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | - C Franck
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - P-J Kellens
- Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium
| | - F Zanca
- Center of Medical Physics in Radiology, Leuven University, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - D Buytaert
- Cardiovascular Research Center, OLV Ziekenhuis Aalst, Moorselbaan 164, Aalst, Belgium
| | - A Van Hoyweghen
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - H El Addouli
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - K Carpentier
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - M Niekel
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - M Spinhoven
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - K Bacher
- Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium
| | - A Snoeckx
- Faculty of Medicine, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| |
Collapse
|
13
|
Yoo SJ, Park YS, Choi H, Kim DS, Goo JM, Yoon SH. Prospective evaluation of deep learning image reconstruction for Lung-RADS and automatic nodule volumetry on ultralow-dose chest CT. PLoS One 2024; 19:e0297390. [PMID: 38386632 PMCID: PMC10883577 DOI: 10.1371/journal.pone.0297390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024] Open
Abstract
PURPOSE To prospectively evaluate whether Lung-RADS classification and volumetric nodule assessment were feasible with ultralow-dose (ULD) chest CT scans with deep learning image reconstruction (DLIR). METHODS The institutional review board approved this prospective study. This study included 40 patients (mean age, 66±12 years; 21 women). Participants sequentially underwent LDCT and ULDCT (CTDIvol, 0.96±0.15 mGy and 0.12±0.01 mGy) scans reconstructed with the adaptive statistical iterative reconstruction-V 50% (ASIR-V50) and DLIR. CT image quality was compared subjectively and objectively. The pulmonary nodules were assessed visually by two readers using the Lung-RADS 1.1 and automatically using a computerized assisted tool. RESULTS DLIR provided a significantly higher signal-to-noise ratio for LDCT and ULDCT images than ASIR-V50 (all P < .001). In general, DLIR showed superior subjective image quality for ULDCT images (P < .001) and comparable quality for LDCT images compared to ASIR-V50 (P = .01-1). The per-nodule sensitivities of observers for Lung-RADS category 3-4 nodules were 70.6-88.2% and 64.7-82.4% for DLIR-LDCT and DLIR-ULDCT images (P = 1) and categories were mostly concordant within observers. The per-nodule sensitivities of the computer-assisted detection for nodules ≥4 mm were 72.1% and 67.4% on DLIR-LDCT and ULDCT images (P = .50). The 95% limits of agreement for nodule volume differences between DLIR-LDCT and ULDCT images (-85.6 to 78.7 mm3) was similar to the within-scan nodule volume differences between DLIR- and ASIR-V50-LDCT images (-63.9 to 78.5 mm3), with volume differences smaller than 25% in 88.5% and 92.3% of nodules, respectively (P = .65). CONCLUSION DLIR enabled comparable Lung-RADS and volumetric nodule assessments on ULDCT images to LDCT images.
Collapse
Affiliation(s)
- Seung-Jin Yoo
- Department of Radiology, Hanyang University Medical Center, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Sik Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Korea
| | - Hyewon Choi
- Department of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Da Som Kim
- Departments of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin Mo Goo
- Department of radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Korea
| | - Soon Ho Yoon
- Department of radiology, Seoul National University Hospital, Seoul National College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Almufareh MF, Tariq N, Humayun M, Almas B. A Federated Learning Approach to Breast Cancer Prediction in a Collaborative Learning Framework. Healthcare (Basel) 2023; 11:3185. [PMID: 38132075 PMCID: PMC10743267 DOI: 10.3390/healthcare11243185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer continues to pose a substantial worldwide public health concern, necessitating the use of sophisticated diagnostic methods to enable timely identification and management. The present research utilizes an iterative methodology for collaborative learning, using Deep Neural Networks (DNN) to construct a breast cancer detection model with a high level of accuracy. By leveraging Federated Learning (FL), this collaborative framework effectively utilizes the combined knowledge and data assets of several healthcare organizations while ensuring the protection of patient privacy and data security. The model described in this study showcases significant progress in the field of breast cancer diagnoses, with a maximum accuracy rate of 97.54%, precision of 96.5%, and recall of 98.0%, by using an optimum feature selection technique. Data augmentation approaches play a crucial role in decreasing loss and improving model performance. Significantly, the F1-Score, a comprehensive metric for evaluating performance, turns out to be 97%. This study signifies a notable advancement in the field of breast cancer screening, fostering hope for improved patient outcomes via increased accuracy and reliability. This study highlights the potential impact of collaborative learning, namely, in the field of FL, in transforming breast cancer detection. The incorporation of privacy considerations and the use of diverse data sources contribute to the advancement of early detection and the treatment of breast cancer, hence yielding significant benefits for patients on a global scale.
Collapse
Affiliation(s)
- Maram Fahaad Almufareh
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Al Jouf 72311, Saudi Arabia;
| | - Noshina Tariq
- Department of Avionics Engineering, Air University, Islamabad 44000, Pakistan;
| | - Mamoona Humayun
- Department of Information Systems, College of Computer and Information Sciences, Jouf University, Al Jouf 72311, Saudi Arabia;
| | - Bushra Almas
- Institute of Information Technology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| |
Collapse
|