1
|
Huang Z, Huang W, Jiang L, Zheng Y, Pan Y, Yan C, Ye R, Weng S, Li Y. Decision Fusion Model for Predicting Microvascular Invasion in Hepatocellular Carcinoma Based on Multi-MR Habitat Imaging and Machine-Learning Classifiers. Acad Radiol 2025; 32:1971-1980. [PMID: 39472207 DOI: 10.1016/j.acra.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
RATIONALE AND OBJECTIVES Accurate prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is crucial for guiding treatment. This study evaluates and compares the performance of clinicoradiologic, traditional radiomics, deep-learning radiomics, feature fusion, and decision fusion models based on multi-region MR habitat imaging using six machine-learning classifiers. MATERIALS AND METHODS We retrospectively included 300 HCC patients. The intratumoral and peritumoral regions were segmented into distinct habitats, from which radiomics and deep-learning features were extracted using arterial phase MR images. To reduce feature dimensionality, we applied intra-class correlation coefficient (ICC) analysis, Pearson correlation coefficient (PCC) filtering, and recursive feature elimination (RFE). Based on the selected optimal features, prediction models were constructed using decision tree (DT), K-nearest neighbors (KNN), logistic regression (LR), random forest (RF), support vector machine (SVM), and XGBoost (XGB) classifiers. Additionally, fusion models were developed utilizing both feature fusion and decision fusion strategies. The performance of these models was validated using the area under the receiver operating characteristic curve (ROC AUC), calibration curves, and decision curve analysis. RESULTS The decision fusion model (VOI-Peri10-1) using LR and integrating clinicoradiologic, radiomics, and deep-learning features achieved the highest AUC of 0.808 (95% confidence interval [CI]: 0.807-0.912) in the test cohort, with good calibration (Hosmer-Lemeshow test, P > 0.050) and clinical net benefit. CONCLUSION The LR-based decision fusion model integrating clinicoradiologic, radiomics, and deep-learning features shows promise for preoperative prediction of MVI in HCC, aiding in patient outcome predictions and personalized treatment planning.
Collapse
Affiliation(s)
- Zhenhuan Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.); Department of Radiology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China (Z.H.)
| | - Wanrong Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.)
| | - Lu Jiang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.)
| | - Yao Zheng
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.)
| | - Yifan Pan
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.)
| | - Chuan Yan
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.)
| | - Rongping Ye
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.)
| | - Shuping Weng
- Department of Radiology, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China (S.W.)
| | - Yueming Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China (Z.H., W.H., L.J., Y.Z., Y.P., C.Y., R.Y., Y.L.); Department of Radiology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China (Y.L.); Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China (Y.L.).
| |
Collapse
|
2
|
Gou J, Li J, Li Y, Lu M, Wang C, Zhuo Y, Dong X. The Diagnostic Accuracy Between Radiomics Model and Non-radiomics Model for Preoperative of Microvascular Invasion of Solitary Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:4419-4433. [PMID: 38664142 DOI: 10.1016/j.acra.2024.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 11/01/2024]
Abstract
RATIONALE AND OBJECTIVES Microvascular invasion (MVI) is a key prognostic factor for hepatocellular carcinoma (HCC). The predictive models for solitary HCC could potentially integrate more comprehensive tumor information. Owing to the diverse findings across studies, we aimed to compare radiomic and non-radiomic methods for preoperative MVI detection in solitary HCC. MATERIALS AND METHODS Articles were reviewed from databases including PubMed, Embase, Web of Science, and the Cochrane Library until April 7, 2023. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model within a 95% confidence interval (CI). Diagnostic accuracy was assessed using summary receiver-operating characteristic curves and the area under the curve (AUC). Meta-regression and Z-tests identified heterogeneity and compared the predictive accuracy. Subgroup analyses were performed to compare the AUC of two methods according to study type, study design, tumor size, modeling methods, and imaging modality. RESULTS The analysis incorporated 26 studies involving 3539 patients with solitary HCC. The radiomics models showed a pooled sensitivity and specificity of 0.79 (95%CI: 0.72-0.85) and 0.78 (95%CI: 0.73-0.82), with an AUC at 0.85 (95%CI: 0.82-0.88). Conversely, the non-radiomics models had sensitivity and specificity of 0.74 (95%CI: 0.65-0.81) and 0.88 (95%CI: 0.82-0.92) and an AUC of 0.88 (95%CI: 0.85-0.91). Subgroups with preoperative MRI, larger tumors, and functional imaging had higher accuracy than those using preoperative CT, smaller tumors, and conventional imaging. CONCLUSION Non-radiomic methods outperformed radiomic methods, but high heterogeneity calls across studies for cautious interpretation.
Collapse
Affiliation(s)
- Junjiu Gou
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jingqi Li
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yingfeng Li
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Mingjie Lu
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Chen Wang
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yi Zhuo
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xue Dong
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
3
|
Feng B, Wang L, Zhu Y, Ma X, Cong R, Cai W, Liu S, Hu J, Wang S, Zhao X. The Value of LI-RADS and Radiomic Features from MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma within 5 cm. Acad Radiol 2024; 31:2381-2390. [PMID: 38199902 DOI: 10.1016/j.acra.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
RATIONALE AND OBJECTIVES To explore and compare the performance of LI-RADS® and radiomics from multiparametric MRI in predicting microvascular invasion (MVI) preoperatively in patients with solitary hepatocellular carcinoma (HCC)< 5 cm. METHODS We enrolled 143 patients with pathologically proven HCC and randomly stratified them into training (n = 100) and internal validation (n = 43) cohorts. Besides, 53 patients were enrolled to constitute an independent test cohort. Clinical factors and imaging features, including LI-RADS and three other features (non-smooth margin, incomplete capsule, and two-trait predictor of venous invasion), were reviewed and analyzed. Radiomic features from four MRI sequences were extracted. The independent clinic-imaging (clinical) and radiomics model for MVI-prediction were constructed by logistic regression and AdaBoost respectively. And the clinic-radiomics combined model was further constructed by logistic regression. We assessed the model discrimination, calibration, and clinical usefulness by using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision-curve analysis respectively. RESULTS Incomplete tumor capsule, corona enhancement, and radiomic features were related to MVI in solitary HCC<5 cm. The clinical model achieved AUC of 0.694/0.661 (training/internal validation). The single-sequence-based radiomic model's AUCs were 0.753-0.843/0.698-0.767 (training/internal validation). The combination model exhibited superior diagnostic performance to the clinical model (AUC: 0.895/0.848 [training/ internal validation]) and yielded an AUC of 0.858 in an independent test cohort. CONCLUSION Incomplete tumor capsule and corona enhancement on preoperative MRI were significantly related to MVI in solitary HCC<5 cm. Multiple-sequence radiomic features potentially improve MVI-prediction-model performance, which could potentially help determining HCC's appropriate therapy.
Collapse
Affiliation(s)
- Bing Feng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China (B.F., L.W., Y.Z., X.M., R.C., W.C., X.Z.)
| | - Leyao Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China (B.F., L.W., Y.Z., X.M., R.C., W.C., X.Z.)
| | - Yongjian Zhu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China (B.F., L.W., Y.Z., X.M., R.C., W.C., X.Z.)
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China (B.F., L.W., Y.Z., X.M., R.C., W.C., X.Z.).
| | - Rong Cong
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China (B.F., L.W., Y.Z., X.M., R.C., W.C., X.Z.)
| | - Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China (B.F., L.W., Y.Z., X.M., R.C., W.C., X.Z.)
| | - Siyun Liu
- GE Healthcare (China), 1# Tongji South Road, Daxing District, Beijing, 100176, China (S.L., S.W.)
| | - Jiesi Hu
- Harbin Institute of Technology, HIT Campus of University Town of Shenzhen, Shenzhen, 518055, China (J.H.)
| | - Sicong Wang
- GE Healthcare (China), 1# Tongji South Road, Daxing District, Beijing, 100176, China (S.L., S.W.)
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China (B.F., L.W., Y.Z., X.M., R.C., W.C., X.Z.)
| |
Collapse
|
4
|
Zhang J, Li Y, Xia J, Pan X, Lu L, Fu J, Jia N. Prediction of Microvascular Invasion and Recurrence After Curative Resection of LI-RADS Category 5 Hepatocellular Carcinoma on Gd-BOPTA Enhanced MRI. J Hepatocell Carcinoma 2024; 11:941-952. [PMID: 38813100 PMCID: PMC11135558 DOI: 10.2147/jhc.s459686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Objective This study aims to investigate the predictive value of Gadobenate dimeglumine (Gd-BOPTA) enhanced MRI features on microvascular invasion (MVI) and recurrence in patients with Liver Imaging Reporting and Data System (LI-RADS) category 5 hepatocellular carcinoma (HCC). Methods A total of 132 patients with LI-RADS category 5 HCC who underwent curative resection and Gd-BOPTA enhanced MRI at our hospital between January 2016 and December 2018 were retrospectively analyzed. Qualitative evaluation based on LI-RADS v2018 imaging features was performed. Logistic regression analyses were conducted to assess the predictive significance of these features for MVI, and the Cox proportional hazards model was used to identify postoperative risk factors of recurrence. The recurrence-free survival (RFS) was analyzed by using the Kaplan-Meier curve and Log rank test. Results Multivariate logistic regression analysis identified that corona enhancement (odds ratio [OR] = 3.217; p < 0.001), internal arteries (OR = 4.147; p = 0.004), and peritumoral hypointensity on hepatobiliary phase (HBP) (OR = 5.165; p < 0.001) were significantly associated with MVI. Among the 132 patients with LR-5 HCC, 62 patients experienced postoperative recurrence. Multivariate Cox regression analysis showed that mosaic architecture (hazard ratio [HR] = 1.982; p = 0.014), corona enhancement (HR = 1.783; p = 0.039), and peritumoral hypointensity on HBP (HR = 2.130; p = 0.009) were risk factors for poor RFS. Conclusion MRI features based on Gd-BOPTA can be noninvasively and effectively predict MVI and recurrence of LR-5 HCC patients.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yinqiao Li
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinju Xia
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xingpeng Pan
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lun Lu
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiazhao Fu
- Department of Organ Transplantation, Changhai Hospital, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ningyang Jia
- Department of Radiology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Li X, Liang X, Li Z, Liang J, Qi Z, Zhong L, Geng Z, Liang W, Quan X, Liang C, Liu Z. A novel stratification scheme combined with internal arteries in CT imaging for guiding postoperative adjuvant transarterial chemoembolization in hepatocellular carcinoma: a retrospective cohort study. Int J Surg 2024; 110:2556-2567. [PMID: 38377071 DOI: 10.1097/js9.0000000000001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Although postoperative adjuvant transarterial chemoembolization (PA-TACE) improves survival outcomes in a subset of patients with resected hepatocellular carcinoma (HCC), the lack of reliable biomarkers for patient selection remains a significant challenge. The present study aimed to evaluate whether computed tomography imaging can provide more value for predicting benefits from PA-TACE and to establish a new scheme for guiding PA-TACE benefits. METHODS In this retrospective study, patients with HCC who had undergone preoperative contrast-enhanced computed tomography and curative hepatectomy were evaluated. Inverse probability of treatment weight was performed to balance the difference of baseline characteristics. Cox models were used to test the interaction among PA-TACE, imaging features, and pathological indicators. An HCC imaging and pathological classification (HIPC) scheme incorporating these imaging and pathological indicators was established. RESULTS This study included 1488 patients [median age, 52 years (IQR, 45-61 years); 1309 male]. Microvascular invasion (MVI) positive, and diameter >5 cm tumors achieved a higher recurrence-free survival (RFS), and overall survival (OS) benefit, respectively, from PA-TACE than MVI negative, and diameter ≤5 cm tumors. Patients with internal arteries (IA) positive benefited more than those with IA-negative in terms of RFS ( P =0.016) and OS ( P =0.018). PA-TACE achieved significant RFS and OS improvements in HIPC3 (IA present and diameter >5 cm, or two or three tumors) patients but not in HIPC1 (diameter ≤5 cm, MVI negative) and HIPC2 (other single tumor) patients. Our scheme may decrease the number of patients receiving PA-TACE by ~36.5% compared to the previous suggestion. CONCLUSIONS IA can provide more value for predicting the benefit of PA-TACE treatment. The proposed HIPC scheme can be used to stratify patients with and without survival benefits from PA-TACE.
Collapse
Affiliation(s)
- Xinming Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- Department of Radiology
| | - Xiangjing Liang
- Ultrasound Medical Center, Zhujiang Hospital Southern Medical University
| | - Zhipeng Li
- Department of Radiology, Sun Yat-sen University Cancer Center
| | - Jianye Liang
- Department of Radiology, Sun Yat-sen University Cancer Center
| | | | - Liming Zhong
- School of Biomedical Engineering, Southern Medical University
| | - Zhijun Geng
- Department of Radiology, Sun Yat-sen University Cancer Center
| | | | | | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, People's Republic of China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Lerut J. Liver transplantation and liver resection as alternative treatments for primary hepatobiliary and secondary liver tumors: Competitors or allies? Hepatobiliary Pancreat Dis Int 2024; 23:111-116. [PMID: 38195351 DOI: 10.1016/j.hbpd.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Jan Lerut
- Institute for Experimental and Clinical Research (IREC), Université catholique Louvain (UCL), Avenue Hippocrate 56, 1200 Woluwe Saint Pierre, Brussels, Belgium.
| |
Collapse
|