1
|
Carmona-Peña S, Contreras-Garduño J, Castro D, Manjarrez J, Vázquez-Chagoyán J. The innate immune response of triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an unresolved question: Do triatomines have immune memory? Acta Trop 2021; 224:106108. [PMID: 34450058 DOI: 10.1016/j.actatropica.2021.106108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
The present work aimed to review the immune response from different triatomines against Trypanosoma cruzi and Trypanosoma rangeli and propose the study of immune memory in such insects. Trypanosoma use triatomines as vectors to reach and infect mammals. A key question to be answered about vector-parasite interaction is why the immune defense and resistance of the insect against the parasites vary. Up to date data shows that the defense of triatomines against parasites includes cellular (phagocytosis, nodulation and encapsulation) and humoral (antimicrobial peptides, phenoloxidase and reactive oxygen and nitrogen species) responses. The immune response varies depending on the triatomine species, the trypanosome strain and species, and the insect intestinal microbiota. Despite significant advances to understand parasite-insect interaction, it is still unknown if triatomines have immune memory against parasites and if this memory may derive from tolerance to parasites attack. Therefore, a closer study of such interaction could contribute and establish new proposals to control the parasite at the vector level to reduce parasite transmission to mammals, including men. For instance, if immune memory exists in the triatomines, it would be interesting to induce weak infections in insects to find out if subsequent infections are less intense and if the insects succeed in eliminating the parasites.
Collapse
|
2
|
Gazos-Lopes F, Mesquita RD, Silva-Cardoso L, Senna R, Silveira AB, Jablonka W, Cudischevitch CO, Carneiro AB, Machado EA, Lima LG, Monteiro RQ, Nussenzveig RH, Folly E, Romeiro A, Vanbeselaere J, Mendonça-Previato L, Previato JO, Valenzuela JG, Ribeiro JMC, Atella GC, Silva-Neto MAC. Glycoinositolphospholipids from Trypanosomatids subvert nitric oxide production in Rhodnius prolixus salivary glands. PLoS One 2012; 7:e47285. [PMID: 23077586 PMCID: PMC3471836 DOI: 10.1371/journal.pone.0047285] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/14/2012] [Indexed: 11/23/2022] Open
Abstract
Background Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. Methodology/Principal Findings Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. Conclusions/Significance Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission.
Collapse
Affiliation(s)
- Felipe Gazos-Lopes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Rafael Dias Mesquita
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Lívia Silva-Cardoso
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Raquel Senna
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Alan Barbosa Silveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Willy Jablonka
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Cecília Oliveira Cudischevitch
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Alan Brito Carneiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Ednildo Alcantara Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luize G. Lima
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Queiroz Monteiro
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Evelize Folly
- Universidade Federal Fluminense, Instituto de Biologia. Campus Valonguinho, Prédio do Instituto de Biologia, Departamento de Biologia Celular e Molecular, Centro, Niterói, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Alexandre Romeiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorick Vanbeselaere
- Université de Lille 1, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve d’Ascq, France
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - José Marcos Chaves Ribeiro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Georgia Correa Atella
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Mário Alberto Cardoso Silva-Neto
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
3
|
Garcia ES, Castro DP, Figueiredo MB, Azambuja P. Parasite-mediated interactions within the insect vector: Trypanosoma rangeli strategies. Parasit Vectors 2012; 5:105. [PMID: 22647620 PMCID: PMC3407744 DOI: 10.1186/1756-3305-5-105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/30/2012] [Indexed: 03/24/2025] Open
Abstract
Trypanosoma rangeli is a protozoan that is non-pathogenic for humans and other mammals but causes pathology in the genus Rhodnius. T. rangeli and R. prolixus is an excellent model for studying the parasite-vector interaction, but its cycle in invertebrates remains unclear. The vector becomes infected on ingesting blood containing parasites, which subsequently develop in the gut, hemolymph and salivary glands producing short and large epimastigotes and metacyclic trypomastigotes, which are the infective forms. The importance of the T. rangeli cycle is the flagellate penetration into the gut cells and invasion of the salivary glands. The establishment of the parasite depends on the alteration of some vector defense mechanisms. Herein, we present our understanding of T. rangeli infection on the vector physiology, including gut and salivary gland invasions, hemolymph reactions and behavior alteration.
Collapse
Affiliation(s)
- Eloi S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz , Rio de Janeiro, RJ, Brazil. @fiocruz.br
| | | | | | | |
Collapse
|
4
|
Interaction of the monoxenic trypanosomatid Blastocrithidia culicis with the Aedes aegypti salivary gland. Acta Trop 2010; 113:269-78. [PMID: 19962365 DOI: 10.1016/j.actatropica.2009.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/18/2009] [Accepted: 11/27/2009] [Indexed: 11/24/2022]
Abstract
Blastocrithidia culicis is a monoxenous trypanosomatid that inhabits mosquitoes. Although its life cycle in these insects has not been described, we recently demonstrated that B. culicis colonizes the Aedes aegypti digestive tract and is also able to reach the mosquito's haemocoel. In this work, we describe the interaction of B. culicis with the A. aegypti salivary gland in vitro and in vivo. Ultrastructural analysis reveals different steps of the invasion process, beginning with the insertion of the B. culicis anterior flagellum into the basal lamina of the gland and ending with the protozoan inside the salivary gland acini compartment. Carbohydrates are involved in the initial adhesion of B. culicis cells to the salivary glands, as demonstrated by protozoan binding inhibition assays and fluorescent lectin labeling of the trypanosomatid-salivary gland interaction. B. culicis is able to survive after incubation in vitro in the mosquito haemolymph, and trypanosomatid binding to salivary glands was confirmed by the injection of radioactively labeled protozoa into the mosquito haemocoel. These results suggest that salivary gland invasion could be part of the B. culicis life cycle in A. aegypti, raising the possibility that B. culicis can be transmitted by these mosquitoes.
Collapse
|