1
|
Dantas AMC, Teixeira FS, Oblitas RL, Araújo WWR, Amaro MC, Cajas RA, de Moraes J, Salvadori MC. Atomic force microscopy reveals morphological and mechanical properties of schistosoma mansoni tegument. Sci Rep 2024; 14:23055. [PMID: 39367249 PMCID: PMC11452522 DOI: 10.1038/s41598-024-74056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Schistosoma mansoni, an intravascular parasitic worm and the causative agent of schistosomiasis, relies on its tegument (outer layer) for survival and host interaction. This study explored the morphology and mechanical properties of S. mansoni tegument using Atomic Force Microscopy (AFM). Notably, we employed the PeakForce Quantitative Nanomechanical Mapping (PF-QNM) mode in air, enabling simultaneous acquisition of 3D topography and mechanical property contrasts (adhesion, elastic modulus). Additionally, nanoindentation (AFM contact mode) was performed on female worm tegument for elastic modulus measurement. Both techniques revealed an elastic modulus range of fractions or units of GPa for the tegument. Interestingly, mechanical property maps, particularly adhesion contrast, displayed a recurring pattern of light and dark bands. We also measured the depth of annular furrows on the female tegument, finding an average of 128 ± 10 nm. These findings establish AFM, particularly PF-QNM, as a valuable tool to characterize S. mansoni tegument properties, offering insights for future investigations into parasite biology and its response to immunological or pharmacological challenges.
Collapse
Affiliation(s)
- Adriane M C Dantas
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Fernanda S Teixeira
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Raissa L Oblitas
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Wagner W R Araújo
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil
| | - Monique C Amaro
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, 07023‑070, SP, Brazil
| | - Rayssa A Cajas
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, 07023‑070, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, 07023‑070, SP, Brazil.
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, 08230-030, SP, Brazil.
| | - Maria C Salvadori
- Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil.
| |
Collapse
|
2
|
Bayaumy FEA, Rizk SA, Darwish AS. Superb bio-effectiveness of Cobalt (II) phthalocyanine and Ag NPs adorned Sm-doped ZnO nanorods/cuttlefish bone to annihilate Trichinella spiralis muscle larvae and adult worms: In-vitro evaluation. Parasitol Int 2024; 101:102899. [PMID: 38663799 DOI: 10.1016/j.parint.2024.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Herein, innovative biocides are designed for the treatment of Trichinella spiralis muscle larvae (ML) and adult worms. Samarium-doped ZnO nanorods (Sm-doped ZnO) are stabilized onto the laminar structure of cuttlefish bone (CB) matrix and adorned by either Ag NPs or cobalt phthalocyanine (CoPc) species. Physicochemical characteristics of such nanocomposites are scrutinised. Adorning of Sm-doped ZnO/CB with Ag NPs shortens rod-like shaped Sm-doped ZnO nanoparticles and accrues them, developing large-sized detached patches over CB moiety. Meanwhile, adorning of Sm-doped ZnO/CB by CoPc species degenerates CB lamellae forming semi-rounded platelets and encourages invading of Sm-doped ZnO nanorods deeply inside gallery spacings of CB. Both nanocomposites possess advanced parasiticidal activity, displaying quite intoxication for ML and adult worms (≥88% mortality) within an incubation period of <48 h at concentrations around 200 μg/ml. CoPc@Sm-doped ZnO/CB nanocomposite exhibits faster killing efficiency of adult worms than that of Ag@Sm-doped ZnO/CB at a concentration of ∼75 μg/ml showing entire destruction of parasite after 24 h incubation with the former nanocomposite and just 60% worm mortality after 36 h exposure to the later one. Morphological studies of the treated ML and adult worms show that CoPc@Sm-doped ZnO/CB exhibits a destructive impact on the parasite body, creating featureless and sloughed fragments enriched with intensive vacuoles. Hybridization of cuttlefish bone lamellae by CoPc species is considered a springboard for fabrication of futuristic aggressive drugs against various food- and water-borne parasites.
Collapse
Affiliation(s)
- Fatma E A Bayaumy
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Sameh A Rizk
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Atef S Darwish
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
3
|
Coutinho Carneiro V, de Abreu da Silva IC, Amaral MS, Pereira ASA, Silveira GO, Pires DDS, Verjovski-Almeida S, Dekker FJ, Rotili D, Mai A, Lopes-Torres EJ, Robaa D, Sippl W, Pierce RJ, Borrello MT, Ganesan A, Lancelot J, Thiengo S, Fernandez MA, Vicentino ARR, Mourão MM, Coelho FS, Fantappié MR. Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) induces global transcriptional deregulation and ultrastructural alterations that impair viability in Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008332. [PMID: 32609727 PMCID: PMC7329083 DOI: 10.1371/journal.pntd.0008332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors.
Collapse
Affiliation(s)
- Vitor Coutinho Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabel Caetano de Abreu da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana S. A. Pereira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Gilbert Oliveira Silveira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan, AV Groningen, Netherlands
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Eduardo José Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dina Robaa
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Germany
| | - Raymond J. Pierce
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, Lille, France
| | - M. Teresa Borrello
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - A. Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Julien Lancelot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Silvana Thiengo
- Laboratório de Malacologia, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monica Ammon Fernandez
- Laboratório de Malacologia, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Moraes Mourão
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Fernanda Sales Coelho
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Marcelo Rosado Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
In vitro activity of usnic acid potassium salt against different developmental stages of Schistosoma mansoni: An ultrastructural study. Acta Trop 2020; 201:105159. [PMID: 31491401 DOI: 10.1016/j.actatropica.2019.105159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
Currently, the control of schistosomiasis is based on a single drug, praziquantel, which is effective against all species of Schistosoma but only in the adult stage, presenting a schistosomicidal deficit at the other developmental stages of the parasites. Recently our research group has demonstrated that the potassium salt of usnic acid (PS-UA) presented schistosomicidal property against couples of adult worms of S. mansoni. Thus, the present study seeks to report for the first time the in vitro activity of PS-UA against different developmental stages of S. mansoni (schistosomules and young worms). As schistosomicide parameters, we evaluated motility, mortality, cell viability of the worms and tegument changes by scanning electron microscopy (SEM). After 3 h exposure, PS-UA was lethal to schistosomules at concentrations of 100 and 50 μM, whereas for concentrations 25 and 12.5 μM, 38 and 18% of mortality and 62 and 24% changes in motility, respectively, were reached. Yet for schistosomules, concentration of 25 μM caused 90 and 100% of death after 6 and 12 h, respectively. In the concentration of 12.5 μM at intervals of 12 and 24 h mortality was 68 and 100%, respectively. For young worms, after 3 h of exposure at concentrations of 200 and 100 μM caused 57 and 27% mortality, respectively. After 12 and 24 h, these concentrations caused mortality of 90 and 100% and 47 and 60% respectively. After 24 h, concentrations of 50 and 25 μM caused 80 and 30% change in motility, respectively. However, at the 12.5 μM concentration no change was observed. In addition, PS-UA reduced the cellular viability of young worms by 50.98% and 85.87% at concentrations of 100 and 200 μM, respectively. In both stages of worms and at different exposure intervals, PS-UA caused alterations such as: dorsoventral contraction, peeling, swelling, blisters, erosion, exposure of subtegumental tissue and disintegration of tegument. According to the results, changes in motility and mortality caused by PS-UA against schistosomules and young worms were concentration and time-dependents, also PS-UA even at low concentration, was able to cause profound ultrastructural changes in the integument of the worms. PS-UA is a promising candidate as prophylactic agent in the control of schistosomiasis mansoni.
Collapse
|
5
|
Gouveia MJ, Brindley PJ, Azevedo C, Gärtner F, da Costa JMC, Vale N. The antioxidants resveratrol and N-acetylcysteine enhance anthelmintic activity of praziquantel and artesunate against Schistosoma mansoni. Parasit Vectors 2019; 12:309. [PMID: 31221193 PMCID: PMC6585032 DOI: 10.1186/s13071-019-3566-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/15/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Treatment of schistosomiasis has relied on the anthelmintic drug praziquantel (PZQ) for more than a generation. Despite its celebrated performance for treatment and control of schistosomiasis and other platyhelminth infections, praziquantel has some shortcomings and the inability of this drug to counteract disease sequelae prompts the need for novel therapeutic strategies. METHODS Using a host-parasite model involving Biomphalaria glabrata and Schistosoma mansoni we established mechanical transformation of S. mansoni cercariae into newly transformed schistosomula (NTS) and characterized optimal culture conditions. Thereafter, we investigated the antischistosomal activity and ability of the antioxidants N-acetylcysteine (NAC) and resveratrol (RESV) to augment the performance of praziquantel and/or artesunate (AS) against larval stages of the parasite. Drug effects were evaluated by using an automated microscopical system to study live and fixed parasites and by transmission electron microscopy (TEM). RESULTS Transformation rates of cercariae to schistosomula reached ~ 70% when the manipulation process was optimized. Several culture media were tested, with M199 supplemented with HEPES found to be suitable for S. mansoni NTS. Among the antioxidants studied, RESV alone or combined with anthelminthic drugs achieved better results rather N-acetylcysteine (NAC). TEM observations demonstrated that the combination of AS + RESV induced severe, extensive alterations to the tegument and subtegument of NTS when compared to the constituent compounds alone. Two anthelmintic-antioxidant combinations, praziquantel-resveratrol [combination index (CI) = 0.74] and artesunate-resveratrol (CI = 0.34) displayed moderate and strong synergy, respectively. CONCLUSIONS The use of viability markers including staining with propidium iodide increased the accuracy of drug screening assays against S. mansoni NTS. The synergies observed might be the consequence of increased action by RESV on targets of AS and PZQ and/or they may act through concomitantly on discrete targets to enhance overall antischistosomal action. Combinations of active agents, preferably with discrete modes of action including activity against developmental stages and/or the potential to ameliorate infection-associated pathology, might be pursued in order to identify novel therapeutic interventions.
Collapse
Affiliation(s)
- Maria João Gouveia
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-343 Porto, Portugal
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, 20037 Washington, DC USA
| | - Carlos Azevedo
- Laboratory of Cell Biology, Institute of Biomedical Sciences (ICBAS/UP), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fátima Gärtner
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-343 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - José M. C. da Costa
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- National Health Institute Dr. Ricardo Jorge (INSA), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Nuno Vale
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-343 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Usnic acid potassium salt from Cladonia substellata (Lichen): Synthesis, cytotoxicity and in vitro anthelmintic activity and ultrastructural analysis against adult worms of Schistosoma mansoni. Acta Trop 2019; 192:1-10. [PMID: 30571934 DOI: 10.1016/j.actatropica.2018.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/25/2023]
Abstract
We report for the first time the in vitro effect of Potassium Salt, derived from Usnic Acid (PS-UA), isolated from the lichen Cladonia substellata Vanio, on couples of Schistosoma mansoni. As schistosomicide parameters, we evaluated mortality, motility, cell viability of the worms and tegument changes by scanning electron microscopy (SEM). Exposure to a concentration of 100 μM caused 75% mortality after 3 h. After 6 h, changes in motility in concentrations of 50 and 25 μM are evidenced. After 12 h and 24h, the concentrations of 50 and 100 μM caused 6.25% and 87.5% and 50% and 100% mortality, respectively. PS-UA reduced the cell viability of the worms by 27.36% and 52.82% at concentrations 50 and 100 μM, respectively. Through SEM we observed progressive dose-and time-dependent, alterations such as swelling, blisters, dorsoventral contraction, erosion until disintegration of the tubercles in the tegument of male and female. PS-UA did not alter the viability of human peripheral blood mononuclear cells and showed high selectivity indices (IC50 > 200 μM). Our results indicate that PS-UA represents a possible candidate for a new anthelmintic drug in the control of schistosomiasis.
Collapse
|
7
|
Kamel ROA, Bayaumy FEZA. Ultrastructural alterations in Schistosoma mansoni juvenile and adult male worms after in vitro incubation with primaquine. Mem Inst Oswaldo Cruz 2017; 112:247-254. [PMID: 28327785 PMCID: PMC5354608 DOI: 10.1590/0074-02760160324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Praziquantel has been cited as the only drug for treating schistosomiasis.
However, concerns over drug resistance have encouraged the search for novel drug
leads. The antimalarial drug primaquine possesses interesting anti-schistosmal
properties. OBJECTIVES This study is the first to document the potential role of primaquine as a
schistosomicide and the ultrastructural changes induced by primaquine on juvenile
or adult male worms of Schistosoma mansoni. METHODS Ultrastructural alterations in the tegumental surface of 21-day-old juvenile and
adult male worms of S. mansoni were demonstrated following
primaquine treatment at different concentrations (2, 5, 10, 15, and 20 µg/mL) and
incubation periods (1, 3, 6, 24, and 48 h) in vitro, using both scanning and
transmission electron microscopy. FINDINGS At low concentrations (2, 5, and 10 µg/mL) both juvenile and adult male worms
were alive after 24 h of incubation, whereas contraction, paralysis, and death of
all worms were observed after 24 h of drug exposure at 20 µg/mL. The tegument of
juvenile and adult male worms treated with primaquine exhibited erosion, peeling,
and sloughing. Furthermore, extensive damage of both tegumental and subtegumental
layers included embedded spines, and shrinkage of muscles with vacuoles. The in
vitro results confirmed that primaquine has dose-dependent effects with 20 µg/mL
as the most effective concentration in a short incubation period. MAIN CONCLUSIONS The schistosomicidal activity of primaquine indicates that this drug possesses
moderate in vitro activity against juvenile and adult male worms, since it caused
high mortality and tegumental alterations. This study confirmed that the
antimalarial drug primaquine possesses anti-schistosomal activity. Further
investigation is needed to elucidate its mechanism of action.
Collapse
Affiliation(s)
- Reem Osama A Kamel
- Ain Shams University, Women College for Arts, Science and Education, Department of Zoology, Asmaa Fahmey St., Cairo, Egypt
| | - Fatma El-Zahraa Anwar Bayaumy
- Ain Shams University, Women College for Arts, Science and Education, Department of Zoology, Asmaa Fahmey St., Cairo, Egypt
| |
Collapse
|
8
|
Mossallam SF, Amer EI, El-Faham MH. Efficacy of Synriam™, a new antimalarial combination of OZ277 and piperaquine, against different developmental stages of Schistosoma mansoni. Acta Trop 2015; 143:36-46. [PMID: 25530543 DOI: 10.1016/j.actatropica.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023]
Abstract
Control of schistosomiasis relies on a single drug, praziquantel (PZQ). Given the rising concerns about the potential emergence of PZQ-resistant strains, it has now become necessary to search for novel therapeutics. However, the current pace for anti-schistosomal drug discovery is slow; hence, repositioning of existing approved drugs can offer a safe, rapid and cost-effective solution. The anti-malarial synthetic artemisinin-derivatives trioxolanes demonstrated anti-schistosomal efficacies against the three major species infecting humans and, unlike PZQ, showed activities against both juvenile and adult worm stages. The 1,2,4-trioxolane/OZ277 (arterolane maleate) in combination with a partner drug: piperaquine phosphate was recently developed as an anti-malarial drug and manufactured by Ranbaxy (India) as Synriam™ (SYN). Herein, the in vivo activities of SYN were investigated in a mouse model of Schistosoma mansoni (S. mansoni), compared to PZQ. We show that a single fixed dose of 240mg/kg SYN (40mg/kg arterolane and 200mg/kg piperaqine) induced significant protective effects in mice, in terms of reduction in worm and tissue egg burdens, which were evident against all schistosome developmental stages. Extensive alterations in the tegument and subtegumental tissues of SYN-exposed worms were revealed by both scanning and transmission electron microscopes. Progressive decrease in worm activity and occurrence of death were noticed in vitro upon exposure to the drug - more pronounced in the presence of haemin. This report provides the first evidence of the efficacy of a combination of 1,2,4-trioxolane and piperaquine against S. mansoni in mice. Being effective against young stages, SYN could be used to prevent early Schistosoma infection.
Collapse
|