1
|
Abbasi E. The impact of climate change on travel-related vector-borne diseases: A case study on dengue virus transmission. Travel Med Infect Dis 2025; 65:102841. [PMID: 40118163 DOI: 10.1016/j.tmaid.2025.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Climate change significantly affects global health, particularly through the increased transmission of vector-borne diseases like dengue fever. This study examines how climate change influences the geographical spread of Aedes aegypti mosquitoes, the main carriers of dengue, highlighting its implications for public health worldwide. MATERIALS AND METHODS This study employed a comprehensive approach to evaluate the effect of climate change on dengue transmission dynamics. It included environmental data analysis, mosquito population surveys, and dengue case reports. Remote sensing data was used to track changes in temperature, precipitation, and humidity in dengue-prone areas. Field surveys measured mosquito density, while molecular techniques assessed viral load in Aedes mosquitoes. Additionally, mathematical modeling predicted dengue's future spread under various climate scenarios. RESULTS The findings indicate a significant correlation between rising temperatures, changing rainfall patterns, and the expansion of Aedes aegypti habitats, resulting in increased mosquito populations in previously non-endemic areas. This ecological shift is linked to a rise in dengue incidence in regions affected by climate change. Projections suggest a 25 % increase in dengue spread by 2050, especially in Southeast Asia, sub-Saharan Africa, and parts of South America. DISCUSSION The study highlights the significant effects of climate change on mosquito distribution and the increasing rates of dengue fever. Warmer temperatures and altered rainfall patterns enhance mosquito growth and virus transmission, while global travel aids the spread of the virus. It emphasizes the necessity for early intervention strategies, including better surveillance, vector control, and adaptations to climate changes, to tackle future dengue transmission issues.
Collapse
Affiliation(s)
- Ebrahim Abbasi
- Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Dye-Braumuller KC, Prisco RA, Nolan MS. (Re)Emerging Arboviruses of Public Health Significance in the Brazilian Amazon. Microorganisms 2025; 13:650. [PMID: 40142542 PMCID: PMC11946775 DOI: 10.3390/microorganisms13030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Brazil is one of the most important countries globally in regard to arboviral disease ecology and emergence or resurgence. Unfortunately, it has shouldered a majority of arboviral disease cases from Latin America and its rich flora, fauna (including arthropod vectors), and climate have contributed to the vast expansion of multiple arboviral diseases within its borders and those that have expanded geographically outside its borders. Anthropogenic landscape changes or human-mediated changes such as agriculture, deforestation, urbanization, etc. have all been at play within the country in various locations and can also be attributed to arboviral movement and resurgence. This review describes a brief history of landscape changes within the country and compiles all the known information on all arboviruses found within Brazil (endemic and imported) that are associated with human disease and mosquitoes including their original isolation, associated vertebrate animals, associated mosquitoes and other arthropods, and human disease symptomology presentations. This information is crucial as the Western Hemisphere is currently experiencing multiple arbovirus outbreaks, including one that originated in the Brazilian Amazon. Understanding which arboviruses are and have been circulating within the country will be pertinent as anthropogenic landscape changes are consistently being perpetrated throughout the country, and the occurrence of the next arbovirus epidemic will be a matter of when, not if.
Collapse
Affiliation(s)
- Kyndall C. Dye-Braumuller
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (R.A.P.); (M.S.N.)
- Institute for Infectious Disease Translational Research, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Rebecca A. Prisco
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (R.A.P.); (M.S.N.)
| | - Melissa S. Nolan
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (R.A.P.); (M.S.N.)
- Institute for Infectious Disease Translational Research, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
3
|
Ouni A, Aounallah H, Rebai WK, Llorente F, Chendoul W, Hammami W, Rhim A, Jiménez-Clavero MÁ, Pérez-Ramírez E, Bouattour A, M’Ghirbi Y. The Role of Ruminants as Sentinel Animals in the Circulation of the West Nile Virus in Tunisia. Pathogens 2025; 14:267. [PMID: 40137752 PMCID: PMC11944776 DOI: 10.3390/pathogens14030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Outbreaks of the West Nile Virus (WNV) have increased significantly in recent years in the Mediterranean region, including Tunisia. To understand the risks for animal and human health and to mitigate the impact of future outbreaks, comprehensive viral surveillance in vertebrate hosts and vectors is needed. We conducted the first serosurvey for the WNV in ruminants in southern Tunisia using the ELISA test and confirmed it with the micro-virus neutralization test (VNT). Antibodies were detected by the ELISA test in camels (38/112), sheep (9/155), and goats (7/58), and six samples were doubtful (five camels and one sheep). The ELISA positive and doubtful sera (n = 60) were further analyzed to confirm the presence of specific anti-WNV and anti-Usutu virus (USUV) antibodies using the micro-virus neutralization test (VNT). Out of the 60 sera, 33 were confirmed for specific WNV antibodies, with an overall seroprevalence of 10.15% [95% CI: 7.09-13.96]. The high seroprevalence observed in camels (22.3%) suggests their potential use as sentinel animals for WNV surveillance in southern Tunisia. The viral genome, and consequently active circulation, could not be detected by real-time RT-qPCR in blood samples. Ongoing surveillance of the WNV in animals, including camels, sheep, and goats, may be used for the early detection of viral circulation and for a rapid response to mitigate potential outbreaks in horses and humans.
Collapse
Affiliation(s)
- Ahmed Ouni
- Laboratoire des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia; (A.O.); (H.A.); (W.H.); (A.R.); (A.B.)
| | - Hajer Aounallah
- Laboratoire des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia; (A.O.); (H.A.); (W.H.); (A.R.); (A.B.)
| | | | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, 28130 Madrid, Spain; (F.L.); (M.Á.J.-C.); (E.P.-R.)
| | - Walid Chendoul
- Circonscription of Animal Production of Ben Guerdane, Médenine 4160, Tunisia;
| | - Walid Hammami
- Laboratoire des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia; (A.O.); (H.A.); (W.H.); (A.R.); (A.B.)
| | - Adel Rhim
- Laboratoire des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia; (A.O.); (H.A.); (W.H.); (A.R.); (A.B.)
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, 28130 Madrid, Spain; (F.L.); (M.Á.J.-C.); (E.P.-R.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, 28130 Madrid, Spain; (F.L.); (M.Á.J.-C.); (E.P.-R.)
| | - Ali Bouattour
- Laboratoire des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia; (A.O.); (H.A.); (W.H.); (A.R.); (A.B.)
| | - Youmna M’Ghirbi
- Laboratoire des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia; (A.O.); (H.A.); (W.H.); (A.R.); (A.B.)
| |
Collapse
|
4
|
M’ghirbi Y, Mousson L, Moutailler S, Lecollinet S, Amaral R, Beck C, Aounallah H, Amara M, Chabchoub A, Rhim A, Failloux AB, Bouattour A. West Nile, Sindbis and Usutu Viruses: Evidence of Circulation in Mosquitoes and Horses in Tunisia. Pathogens 2023; 12:pathogens12030360. [PMID: 36986282 PMCID: PMC10056592 DOI: 10.3390/pathogens12030360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mosquito-borne diseases have a significant impact on humans and animals and this impact is exacerbated by environmental changes. However, in Tunisia, surveillance of the West Nile virus (WNV) is based solely on the surveillance of human neuroinvasive infections and no study has reported mosquito-borne viruses (MBVs), nor has there been any thorough serological investigation of anti-MBV antibodies in horses. This study therefore sought to investigate the presence of MBVs in Tunisia. Among tested mosquito pools, infections by WNV, Usutu virus (USUV), and Sindbis virus (SINV) were identified in Cx. perexiguus. The serosurvey showed that 146 of 369 surveyed horses were positive for flavivirus antibodies using the cELISA test. The microsphere immunoassay (MIA) showed that 74 of 104 flavivirus cELISA-positive horses were positive for WNV, 8 were positive for USUV, 7 were positive for undetermined flaviviruses, and 2 were positive for tick-borne encephalitis virus (TBEV). Virus neutralization tests and MIA results correlated well. This study is the first to report the detection of WNV, USUV and SINV in Cx. perexiguus in Tunisia. Besides, it has shown that there is a significant circulation of WNV and USUV among horses, which is likely to cause future sporadic outbreaks. An integrated arbovirus surveillance system that includes entomological surveillance as an early alert system is of major epidemiological importance.
Collapse
Affiliation(s)
- Youmna M’ghirbi
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- Correspondence: or
| | - Laurence Mousson
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 Rue du Docteur Roux, 75724 Paris, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94704 Maisons-Alfort, France
| | - Sylvie Lecollinet
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Rayane Amaral
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Cécile Beck
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Hajer Aounallah
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Meriem Amara
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Chabchoub
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- National School of Veterinary Medicine, Sidi Thabet, University of Manouba, La Manouba 2010, Tunisia
| | - Adel Rhim
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 Rue du Docteur Roux, 75724 Paris, France
| | - Ali Bouattour
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
5
|
Amdouni J, Conte A, Ippoliti C, Candeloro L, Tora S, Sghaier S, Hassine TB, Fakhfekh EA, Savini G, Hammami S. Culex pipiens distribution in Tunisia: Identification of suitable areas through Random Forest and MaxEnt approaches. Vet Med Sci 2022; 8:2703-2715. [PMID: 36005907 PMCID: PMC9677390 DOI: 10.1002/vms3.897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Tunisia has experienced several West Nile virus (WNV) outbreaks since 1997. Yet, there is limited information on the spatial distribution of the main WNV mosquito vector Culex pipiens suitability at the national level. OBJECTIVES In the present study, our aim was to predict and evaluate the potential and current distribution of Cx. pipiens in Tunisia. METHODS To this end, two species distribution models were used, i.e. MaxEnt and Random Forest. Occurrence records for Cx. pipiens were obtained from adult and larvae sampled in Tunisia from 2014 to 2017. Climatic and human factors were used as predictors to model the Cx. pipiens geographical distribution. Mean decrease accuracy and mean decrease Gini indices were calculated to evaluate the importance of the impact of different environmental and human variables on the probability distribution of Cx. pipiens. RESULTS Suitable habitats were mainly distributed next to oases, in the north and eastern part of the country. The most important predictor was the population density in both models. The study found out that the governorates of Monastir, Nabeul, Manouba, Ariana, Bizerte, Gabes, Medenine and Kairouan are at highest epidemic risk. CONCLUSIONS The potential distribution of Cx. pipiens coincides geographically with the observed distribution of the disease in humans in Tunisia. Our study has the potential for driving control effort in the fight against West Nile vector in Tunisia.
Collapse
Affiliation(s)
- Jihane Amdouni
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de TunisieTunisTunisie
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Carla Ippoliti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Luca Candeloro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Susanna Tora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Soufien Sghaier
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de TunisieTunisTunisie
| | - Thameur Ben Hassine
- Ecole Nationale de Médecine Vétérinaire de Sidi ThabetUniv. ManoubaIRESATunisie
| | - Emna Ayari Fakhfekh
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de TunisieTunisTunisie
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’TeramoItaly
| | - Salah Hammami
- Ecole Nationale de Médecine Vétérinaire de Sidi ThabetUniv. ManoubaIRESATunisie
| |
Collapse
|
6
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
7
|
Zhang Y, Lei W, Wang Y, Sui H, Liu B, Li F, He Y, Li Z, Fu S, Wang L, Xu L, Mahe M, Gao Z, Mamutijiang T, Lv Z, Xiang N, Zhou L, Ni D, Liang G, Li Q, Wang H, Feng Z. Surveillance of West Nile virus infection in Kashgar Region, Xinjiang, China, 2013-2016. Sci Rep 2021; 11:14010. [PMID: 34234184 PMCID: PMC8263600 DOI: 10.1038/s41598-021-93309-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
West Nile virus (WNV) was first isolated in mainland China from mosquitoes in Jiashi County, Kashgar Region, Xinjiang in 2011, following local outbreaks of viral meningitis and encephalitis caused by WNV. To elaborate the epidemiological characteristics of the WNV, surveillance of WNV infection in Kashgar Region, Xinjiang from 2013 to 2016 were carried out. Blood and CSF samples from surveillance human cases, blood of domestic chicken, cattle, sheep and mosquitoes in Kashgar Region were collected and detected. There were human 65 WNV Immunoglobulin M (IgM) antibody positive cases by ELISA screening, 6 confirmed WNV cases by the plaque reduction neutralization test (PRNT) screening. These cases occurred mainly concentrated in August to September of each year, and most of them were males. WNV-neutralizing antibodies were detected in both chickens and sheep, and the positive rates of neutralizing antibodies were 15.5% and 1.78%, respectively. A total of 15,637 mosquitoes were collected in 2013–2016, with Culex pipiens as the dominant mosquito species. Four and 1 WNV-positive mosquito pools were detected by RT-qPCR in 2013 and 2016 respectively. From these data, we can confirm that Jiashi County may be a natural epidemic foci of WNV disease, the trend highlights the routine virology surveillance in WNV surveillance cases, mosquitoes and avian should be maintained and enhanced to provide to prediction and early warning of outbreak an epidemic of WNV in China.
Collapse
Affiliation(s)
- Yanping Zhang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Wenwen Lei
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Yali Wang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Haitian Sui
- China National Biotec Group Company Limited, Beijing, 100024, People's Republic of China
| | - Bo Liu
- Center for Drug Evaluation of the China National Medical Products Administration, Beijing, 100022, People's Republic of China
| | - Fan Li
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Ying He
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Zhaoxia Li
- Kashgar Center for Disease Control and Prevention of Xinjiang, Kashgar, 844000, People's Republic of China
| | - Shihong Fu
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Lu Wang
- Kashgar Center for Disease Control and Prevention of Xinjiang, Kashgar, 844000, People's Republic of China
| | - Limin Xu
- Kashgar Center for Disease Control and Prevention of Xinjiang, Kashgar, 844000, People's Republic of China
| | - Muti Mahe
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, 830001, People's Republic of China
| | - Zhenguo Gao
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi, 830001, People's Republic of China
| | - Tuerxun Mamutijiang
- Jiashi Center for Disease Control and Prevention, Jiashi, 844300, People's Republic of China
| | - Zhi Lv
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Nijuan Xiang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Lei Zhou
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Daxin Ni
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Guodong Liang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Qun Li
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Huanyu Wang
- Department of Viral Encephalitis, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | - Zijian Feng
- Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
8
|
Fares W, Gdoura M, Dhrif H, Touzi H, Hogga N, Hannachi N, Mhalla S, Kacem S, Karray H, Bougatef S, Ben-Alaya N, Triki H. Genetic characterization of West Nile Virus strains during neuroinvasives infection outbreak in Tunisia, 2018. Transbound Emerg Dis 2020; 68:2414-2421. [PMID: 33128297 DOI: 10.1111/tbed.13905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
West Nile Virus (WNV) is an arbovirus transmitted by mosquito bite involving birds as reservoirs, humans and equines as accidental hosts. Eight distinct lineages (WNV-1 to WNV-8) have been identified: WNV-1 and WNV-2 infect humans and animals, and WNV-3 to WNV-8 have been identified only in vectors. WNV has been implicated in neuroinvasives infections, especially meningitis and encephalitis. Tunisia experienced three epidemics in 1997, 2003 and 2012. Serological studies on humans, equines and birds as well as the detection of the virus in the vector favour a fairly frequent circulation in the country. A new epidemic has been observed in Tunisia between August and November 2018. The obtained sequences of the VWN from Tunisia 2018 grouped in a distinct monophyletic group within the Mediterranean subtype in Cluster 1, with a maximum of 2% nucleotide divergence. These sequences were clearly distinct from the Tunisia 1997, which grouped with sequences mainly from USA in Cluster 2. This work reports the genetic characterization of the Tunisia 2018 strain in comparison with the previously identified strains in Tunisia and worldwide. The epidemic virus Tunisia 2018 was genetically close to the Mediterranean basin and Eastern Europe sequences but distinct from the Tunisia 1997 closely related to the American sequences.
Collapse
Affiliation(s)
- Wasfi Fares
- Laboratory of Clinical Virology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Mariem Gdoura
- Laboratory of Clinical Virology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Haifa Dhrif
- Laboratory of Clinical Virology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Henda Touzi
- Laboratory of Clinical Virology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Nahed Hogga
- Laboratory of Clinical Virology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Naila Hannachi
- Laboratory of Microbiology, CHU Farhat Hached, Sousse, Tunisia
| | - Salma Mhalla
- Laboratory of Microbiology, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Saoussen Kacem
- Laboratory of Microbiology, CHU Sahloul, Sousse, Tunisia
| | - Hela Karray
- Laboratory of Microbiology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Souha Bougatef
- National Observatory for New and Emerging Diseases, Ministry of Health, Tunis, Tunisia
| | - Nissaf Ben-Alaya
- National Observatory for New and Emerging Diseases, Ministry of Health, Tunis, Tunisia.,Faculty of Medicine, University Tunis-El Manar, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, Institut Pasteur de Tunis, Tunis, Tunisia.,Faculty of Medicine, University Tunis-El Manar, Tunis, Tunisia
| |
Collapse
|
9
|
Fares W, Dachraoui K, Cherni S, Barhoumi W, Slimane TB, Younsi H, Zhioua E. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick Borne Dis 2020; 12:101606. [PMID: 33189912 DOI: 10.1016/j.ttbdis.2020.101606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is the etiologic agent of tick-borne encephalitis (TBE) and transmitted by Ixodes ricinus (Linnaeus, 1758) in Europe. The geographical distribution of I. ricinus in the Palearctic region covers also northern Africa, including northwestern Tunisia. While the eco-epidemiology of TBE in Europe is well documented, no data concerning TBEV from northern Africa are available. We investigated whether TBEV is circulating in Tunisia. A total of 877 adult I. ricinus collected from northwestern Tunisia were examined in pools for the presence of TBEV by nRT-PCR. Viral RNA was detected in one pool of three engorged ticks, yielding a minimum infection rate of 0.11 % (1/877). Phylogenetic analysis showed that the Tunisian TBEV strain belongs to the European lineage. We report for the first time the presence of TBEV in I. ricinus from northern Africa. Therefore, more studies are needed to assess the public health importance of TBEV in northern Africa.
Collapse
Affiliation(s)
- Wasfi Fares
- Vector Ecology Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| | | | | | - Walid Barhoumi
- Vector Ecology Unit, Institut Pasteur de Tunis, Tunis, Tunisia
| | | | - Hend Younsi
- Institut Supérieur des Sciences Biologiques Appliquées, Tunis, Tunisia
| | - Elyes Zhioua
- Vector Ecology Unit, Institut Pasteur de Tunis, Tunis, Tunisia.
| |
Collapse
|
10
|
Selmi R, Mamlouk A, Ben Said M, Ben Yahia H, Abdelaali H, Ben Chehida F, Daaloul-Jedidi M, Gritli A, Messadi L. First serological evidence of the Rift Valley fever Phlebovirus in Tunisian camels. Acta Trop 2020; 207:105462. [PMID: 32325049 DOI: 10.1016/j.actatropica.2020.105462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022]
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonosis that severely impacts livelihoods, national and international economies, and human health. Few studies have investigated the prevalence of this infection in Tunisian livestock. The present report aimed to update the epidemiological status and identify the risk factors associated with this RVF virus infection in the one-humped dromedary camel from arid areas. A total of 470 sera of apparently healthy camels (Camelus dromedarius) were collected from six governorates from southern and central Tunisia. Samples were tested by a competitive Enzyme Linked Immunosorbent Assay (ELISA). An overall, 162 camels (34%, 95%CI: 0.1-0.4) were seropositive to RVF virus antigen. Logistic regression model revealed three potential risk factors associated with the infection. A meaningful high seropositivity was observed among aged camels (>10 years-old) (40%) (P=0.001; OR=3.367). Besides, camels raised in small flocks particularly intended for meat production showed a high level of seropositivity (37%) (P=0.013; OR=13.173). Animals having close contact with other ruminants showed high seroprevalence (37%) (P=0.022; OR=10.919). This report indicated that Tunisian one-humped dromedaries were exposed to this virus and may contribute to its dissemination among farmers and other livestock. Furthers studies are urgently required to isolate and characterize this virus, evaluate the potential risk of human infection particularly in farmers, veterinarians and slaughterhouse workers and finally to program a serious strategy for RVF control.
Collapse
|
11
|
Amdouni J, Monaco F, Portanti O, Sghaier S, Conte A, Hassine TB, Polci A, Valleriani F, Gennaro AD, Zoueri M, Savini G, Hammami S. Detection of enzootic circulation of a new strain of West Nile virus lineage 1 in sentinel chickens in the north of Tunisia. Acta Trop 2020; 202:105223. [PMID: 31647898 DOI: 10.1016/j.actatropica.2019.105223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
Tunisia has experienced various West Nile disease outbreaks. Notwithstanding the serological and molecular confirmations in humans, horses and birds, the human surveillance system can still be improved. Three sentinel chicken flocks were placed in different Tunisian endemic regions and followed up from September 2016 to January 2017. A total of 422 sera from Sejnene (north of Tunisia), 392 from Moknine (east coast of Tunisia) and 386 from Tozeur (south of Tunisia) were tested for West Nile-specific antibodies and viral RNA. The WNV elisa positive rate in sentinel chickens in Sejnene was 10.7% (95% CI: 5.08-21.52). No positive samples were detected in Moknine. In Tozeur, the overall serological elisa positive rate during the study period was 9.8% (95% CI:4.35-21.03). West Nile virus nucleic acid was detected in two chickens in Sejnene.Phylogenetic analysis of one of the detected partial NS3 gene sequences showed that recent Tunisian WNV strain belong to WNV lineage 1 and is closely related to Italian strains detected in mosquitoes in 2016 and in a sparrow hawk in 2017. This report showed the circulation, first molecular detection and sequencing of WNV lineage 1 in chickens in the north of Tunisia and highlights the use of poultry as a surveillance tool to detect WNV transmission in a peri-domestic area.
Collapse
Affiliation(s)
- Jihane Amdouni
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, Tunisie.
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Soufien Sghaier
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, Tunisie
| | - Annamaria Conte
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Thameur Ben Hassine
- Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université la Manouba, IRESA, Tunisie
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | | | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Salah Hammami
- Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université la Manouba, IRESA, Tunisie
| |
Collapse
|
12
|
Ayadi T, Hammouda A, Beck C, Boulinier T, Lecollinet S, Selmi S. Flaviviruses in migratory passerines during spring stopover in a desert oasis. Zoonoses Public Health 2019; 66:495-503. [PMID: 31090178 DOI: 10.1111/zph.12584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
Abstract
Bird migration has long been hypothesized as the main mechanism for long-distance dispersal of flaviviruses, but the role of migratory birds in flaviviruses spillover is not well documented. In this study, we investigated the eco-epidemiology of West Nile virus (WNV) and Usutu virus (USUV) in trans-Saharan passerines during their spring stopover in southern Tunisian oases. To do, we combined oral swab analysis and serological tools to assess whether migratory birds could be reaching these stopover sites while infectious or have been previously exposed to viruses. All sampled birds tested negative for oral swab analysis. However, anti-WNV and anti-USUV antibodies were detected in 32% and 1% of tested birds, respectively. Among WNV-seropositive species, the Golden oriole (Oriolus oriolus) showed the highest anti-WNV occurrence probability. In this species, anti-WNV occurrence was twice larger in males than females. Inter-specific and intraspecific morphological, physiological and behavioural differences could explain these results. Although our findings did not show evidence for passerines migrating while infectious, they did not exclude an existing enzootic WNV transmission cycle in Tunisian oases. Further investigations including larger samples of migratory birds are needed for a better understanding of this issue.
Collapse
Affiliation(s)
- Tasnim Ayadi
- Unité de Recherche 'Ecologie de la Faune Terrestre', UR17ES44, Faculté des Sciences, Université de Gabès, Gabès, Tunisia
| | - Abdesslem Hammouda
- Unité de Recherche 'Ecologie de la Faune Terrestre', UR17ES44, Faculté des Sciences, Université de Gabès, Gabès, Tunisia
| | - Ceclie Beck
- UPE, ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, France
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-Université de Montpellier UMR 5175, Montpellier, France
| | - Sylvie Lecollinet
- UPE, ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, France
| | - Slaheddine Selmi
- Unité de Recherche 'Ecologie de la Faune Terrestre', UR17ES44, Faculté des Sciences, Université de Gabès, Gabès, Tunisia
| |
Collapse
|
13
|
Epidemiology of West Nile Virus in the Eastern Mediterranean region: A systematic review. PLoS Negl Trop Dis 2019; 13:e0007081. [PMID: 30695031 PMCID: PMC6368338 DOI: 10.1371/journal.pntd.0007081] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/08/2019] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Background West Nile Virus (WNV), a member of the genus Flavivirus, is one of the most widely distributed arboviruses in the world. Despite some evidence for circulation of WNV in countries summarized by the World Health Organization as the Eastern Mediterrian Regional Office (EMRO), comprehensive knowledge about its epidemiology remains largely unknown. This study aims to provide a concise review of the published literature on WNV infections in the Eastern Mediterranean Regional Office of WHO (EMRO). Methodology/principal findings A systematic review of WNV prevalence studies on humans, animals and vectors in the EMRO region was performed by searching: Web of Science, Science Direct, Scopus, PubMed, Embase and Google Scholar. Finally, 77 citations were included, comprising 35 seroprevalence studies on general population (24460 individuals), 15 prevalence studies among patients (3439 individuals), 22 seroprevalence studies among animals (10309 animals), and 9 studies on vectors (184242 vector species). Of the 22 countries in this region, five had no data on WNV infection among different populations. These countries include Kuwait, Bahrain, Oman, Syria and Somalia. On the other hand, among countries with available data, WNV-specific antibodies were detected in the general population of all investigated countries including Djibouti (0.3–60%), Egypt (1–61%), Iran (0–30%), Iraq (11.6–15.1%), Jordan (8%), Lebanon (0.5–1%), Libya (2.3%), Morocco (0–18.8%), Pakistan (0.6–65.0%), Sudan (2.2–47%), and Tunisia (4.3–31.1%). WNV RNA were also detected in patient populations of Iran (1.2%), Pakistan (33.3%), and Tunisia (5.3% –15.9%). WNV-specific antibodies were also detected in a wide range of animal species. The highest seropositivity rate was observed among equids (100% in Morocco) and dogs (96% in Morocco). The highest seroprevalence among birds was seen in Tunisia (23%). In addition, WNV infection was detected in mosquitoes (Culex, and Aedes) and ticks (Argas reflexus hermanni). The primary vector of WNV (Culex pipiens s.l.) was detected in Djibouti, Egypt, Iran and Tunisia, and in mosquitoes of all these countries, WNV was demonstrated. Conclusions This first systematic regional assessment of WNV prevalence provides evidence to support the circulation of WNV in the EMRO region as nearly all studies showed evidence of WNV infection in human as well as animal/vector populations. These findings highlight the need for continued prevention and control strategies and the collection of epidemiologic data for WNV epidemic status, especially in countries that lack reliable surveillance systems. West Nile Virus (WNV) is a mosquito-borne Flavivirus belonging to the Flaviviridae family, which is endemic in a vast geographical area, including the EMRO region. However, the epidemiology of WNV in the EMRO region remains poorly understood. To address this gap, we performed a systematic review on WNV prevalence studies conducted on human populations, animals and vectors across Eastern Mediterranean countries. Our review indicated the infection of most investigated human, animal and vector populations with WNV; however, the paucity of epidemiological data underline the need for integrated surveillance programs as well as continued deployment of prevention and control strategies.
Collapse
|
14
|
A four-year survey (2011-2014) of West Nile virus infection in humans, mosquitoes and birds, including the 2012 meningoencephalitis outbreak in Tunisia. Emerg Microbes Infect 2018. [PMID: 29535295 PMCID: PMC5849722 DOI: 10.1038/s41426-018-0028-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A West Nile virus (WNV) outbreak occurred in Tunisia between mid-July and December 2012. To assess the epidemiological features of the WNV transmission cycle, human cerebrospinal fluid samples from patients with suspected cases (n = 79), Culex pipiens mosquitoes (n = 583) and serum specimens from domestic and migratory birds (n = 70) were collected for 4 years (2011–2014) in the Tunisian Sahel region. Viral testing was performed by polymerase chain reaction (PCR). The WNV genome was detected in 7 patients (8.8%), 4 Culex pipiens pools, and a domestic mallard (Anas platyrhynchos). All PCR-positive samples were from the Monastir region. Phylogenetic analysis revealed that two different WNV strain groups circulated, and isolates from the reservoir (bird), vector (Culex pipiens), and dead-end hosts (humans) were closely related. The Monastir region is a hot-spot for WNV infection, and the reiterative presence of WNV over the years has increased the risk of viral reemergence in Tunisia, which highlights the need for more enhanced and effective WNV surveillance in humans with public awareness campaigns strengthened by monitoring mosquitoes and maintaining avian surveillance for early detection of WNV circulation.
Collapse
|
15
|
Evidence of exposure of laughing doves (Spilopelia senegalensis) to West Nile and Usutu viruses in southern Tunisian oases. Epidemiol Infect 2017; 145:2808-2816. [DOI: 10.1017/s0950268817001789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SUMMARYIt has previously been suggested that southern Tunisian oases may be suitable areas for the circulation of flaviviruses. In order to anticipate and prevent possible epidemiological spread of flaviviruses in humans and domestic animals, the ecology of their transmission in the oasis system needs to be better understood. Thus, the aim of this study was to assess the seroprevalence of anti-flavivirus antibodies in the laughing dove (Spilopelia senegalensis), an abundant resident bird in Tunisian oases. Anti-flavivirus antibodies were detected in 17% of sampled doves. Ten per cent of the total tested doves were West Nile virus (WNV) seropositive and 4% were Usutu virus (USUV) seropositive, which provides the first evidence of USUV circulation in Tunisian birds. We also found that the occurrence probability of anti-flavivirus antibodies in dove plasma increased with decreasing distance to coast, suggesting that doves inhabiting coastal oases were more exposed to flaviviruses compared with those inhabiting inland oases. We also found significantly higher antibody occurrence probability in adult doves compared with young doves, which underlines the effect of exposure time. Overall, our results suggest that the laughing dove may be used for WNV and USUV surveillance in southern Tunisia. They also stress the need for investigations combining data on birds and mosquitoes to better understand the ecological factors governing the circulation of flaviviruses in this area.
Collapse
|
16
|
Beji M, Rhim A, Roiz D, Bouattour A. Ecophysiological characterization and molecular differentiation of Culex pipiens forms (Diptera: Culicidae) in Tunisia. Parasit Vectors 2017; 10:327. [PMID: 28693560 PMCID: PMC5504560 DOI: 10.1186/s13071-017-2265-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022] Open
Abstract
Background The Culex pipiens complex (Diptera: Culicidae) includes the most widespread mosquito species in the world. Members of this complex are the primary enzootic and epidemic vectors of the West Nile virus (genus Flavivirus) in several countries. The two recognized forms of Cx. pipiens (Linnaeus, 1758) - pipiens and molestus- exhibit behavioral and physiological differences. Natural populations of Cx. pipiens were investigated in several sites in Tunisia to evaluate the ecophysiological and molecular characteristics of their forms. Results The analysis showed the sympatric presence of Cx. pipiens forms and hybrids in all studied sites. Of all the tested larvae of Cx. pipiens, 33.5% were identified as pipiens, 30.8% were identified as molestus, and 35.6% were identified as hybrids. The molestus and hybrid forms were positively correlated with urban habitats and belowground sites while the pipiens form was positively correlated with rural habitats and aboveground sites. Autogeny was expressed in all types of habitats and breeding sites. By contrast with the microsatellite CQ11, the two molecular markers, ace-2 and cytb, did not allow differentiation between the Cx. pipiens forms. Conclusions Our study shows the ubiquitous distribution and the plasticity of the different forms of Cx. pipiens in a wide range of ecological conditions. It suggests that the behavioral traits assigned to the forms of Cx. pipiens seem to be more flexible than previously assumed. Our analysis also proves that the microsatellite CQ11 remains an efficient tool for distinguishing between Cx. pipiens forms. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2265-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marwa Beji
- Université Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire LR11IPT03, Service d'Entomologie Médicale, 1002, Tunis-Belvédère, Tunisia
| | - Adel Rhim
- Université Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire LR11IPT03, Service d'Entomologie Médicale, 1002, Tunis-Belvédère, Tunisia
| | - David Roiz
- Infectious Diseases and Vectors: Ecology, Genetics, Evolution and Control, IRD (Institut de Recherche pour le Développement), Montpellier, France
| | - Ali Bouattour
- Université Tunis El Manar, Institut Pasteur de Tunis, Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire LR11IPT03, Service d'Entomologie Médicale, 1002, Tunis-Belvédère, Tunisia.
| |
Collapse
|
17
|
Hassine TB, Amdouni J, Monaco F, Savini G, Sghaier S, Selimen IB, Chandoul W, Hamida KB, Hammami S. Emerging vector-borne diseases in dromedaries in Tunisia: West Nile, bluetongue, epizootic haemorrhagic disease and Rift Valley fever. ACTA ACUST UNITED AC 2017; 84:e1-e3. [PMID: 28397519 PMCID: PMC6238681 DOI: 10.4102/ojvr.v84i1.1316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/03/2022]
Abstract
A total of 118 sera were collected during 2016 from two groups of dromedaries from Kebili and Medenine governorates in the south of Tunisia. The aim of this study was to provide the first serological investigation of four emerging vector-borne diseases in two groups of dromedaries in Tunisia. Sera were tested by ELISA and serum neutralisation test to identify West Nile virus (WNV), bluetongue virus (BTV), epizootic haemorrhagic disease virus (EHDV) and Rift Valley fever virus (RVFV). In the first group, the seroprevalence for BTV was 4.6%, while in the second group, it was 25.8% for WNV and 9.7% for BTV. Only serotype 1 was detected for BTV in the two groups. No evidence for circulation of RVF and EHD viruses was revealed. Results indicated that dromedaries can be infected with BTV and WNV, suggesting that this species might play a significant role in the epizootiology of these viral diseases in Tunisia and neighbouring countries.
Collapse
Affiliation(s)
| | - Jihane Amdouni
- Université Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie.
| | | | | | | | | | | | | | | |
Collapse
|