1
|
Rangel-Muñoz EJ, Valdivia-Flores AG, Cruz-Vázquez C, de-Luna-López MC, Hernández-Valdivia E, Vitela-Mendoza I, Medina-Esparza L, Quezada-Tristán T. Increased Dissemination of Aflatoxin- and Zearalenone-Producing Aspergillus spp. and Fusarium spp. during Wet Season via Houseflies on Dairy Farms in Aguascalientes, Mexico. Toxins (Basel) 2024; 16:302. [PMID: 39057942 PMCID: PMC11281273 DOI: 10.3390/toxins16070302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.
Collapse
Affiliation(s)
- Erika Janet Rangel-Muñoz
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Arturo Gerardo Valdivia-Flores
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Carlos Cruz-Vázquez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - María Carolina de-Luna-López
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Emmanuel Hernández-Valdivia
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| | - Irene Vitela-Mendoza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - Leticia Medina-Esparza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, km 18 carretera Aguascalientes—San Luis Potosí, El Llano, Aguascalientes 20330, Mexico; (C.C.-V.); (I.V.-M.)
| | - Teódulo Quezada-Tristán
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico; (E.J.R.-M.); (M.C.d.-L.-L.); (E.H.-V.); (T.Q.-T.)
| |
Collapse
|
2
|
Rangel-Muñoz EJ, Cruz-Vázquez C, Medina-Esparza L, Vitela-Mendoza I, Valdivia-Flores AG. Presence of the toxigenic fungi Aspergillus spp. and Fusarium spp. in Musca domestica L. (Diptera: Muscidae) collected from dairy farms. J Dairy Sci 2023:S0022-0302(23)00331-4. [PMID: 37296052 DOI: 10.3168/jds.2022-23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 06/12/2023]
Abstract
The objective of the study was to identify the presence of toxigenic fungi Aspergillus spp. and Fusarium spp. in domestic flies collected from dairy farms. We selected 10 dairy farms distributed in the central valley of the state of Aguascalientes, México. The flies were trapped using entomological traps with an olfactory attractant in 7 sites of the farm (silo-cutting surface, feed store, milking parlor, 3 feeders, and the rearing room). The fungi were cultivated in Sabouraud agar through direct sowing by serial dilutions to obtain the isolates, and a taxonomical identification was carried out under the microscope. The aflatoxins and zearalenone production capacity of the pure isolates were quantified using the ELISA test. The flies were present in all of the capture sites (45.3 flies, 567 mg, trap per day). We obtained 50 isolates of Aspergillus spp. genus, 12 of which produced aflatoxins (327 ± 143 µg/kg), whereas from 56 of the Fusarium spp. isolates, 10 produced large quantities of zearalenone (3,132 ± 665 µg/kg). These results suggest that the presence of domestic flies on dairy farms can constitute a source of dissemination for toxigenic fungi that can eventually contaminate grains and forage that are part of the daily cattle diet.
Collapse
Affiliation(s)
- Erika Janet Rangel-Muñoz
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, El Llano, Aguascalientes, 20330, México; Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes, 20131, México.
| | - Carlos Cruz-Vázquez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, El Llano, Aguascalientes, 20330, México
| | - Leticia Medina-Esparza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, El Llano, Aguascalientes, 20330, México
| | - Irene Vitela-Mendoza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México, Instituto Tecnológico El Llano Aguascalientes, El Llano, Aguascalientes, 20330, México
| | - Arturo Gerardo Valdivia-Flores
- Departamento de Ciencias Veterinarias, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes, 20131, México
| |
Collapse
|
3
|
Seasonal and Geographical Impact on the Mycotoxigenicity of Aspergillus and Fusarium Species Isolated from Smallholder Dairy Cattle Feeds and Feedstuffs in Free State and Limpopo Provinces of South Africa. Toxins (Basel) 2023; 15:toxins15020128. [PMID: 36828441 PMCID: PMC9965880 DOI: 10.3390/toxins15020128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
This study evaluated the impact of seasonal and geographical variations on the toxigenicity of Aspergillus and Fusarium strains previously isolated from smallholder dairy cattle feeds and feedstuffs sampled during summer and winter in the Free State and Limpopo provinces of South Africa (SA). In total, 112 potential toxigenic fungal species were obtained and determined for their capability to produce mycotoxins on solid Czapek Yeast Extract Agar (CYA); followed by liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Our result revealed that 41.96% of the fungal species produced their respective mycotoxins, including aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), and zearalenone (ZEN), with higher levels of AFB1 (0.22 to 1045.80 µg/kg) and AFB2 (0.11 to 3.44 µg/kg) produced by fungal species isolated from summer samples than those in winter [(0.69 to 14.44 µg/kg) and (0.21 to 2.26 µg/kg), respectively]. The same pattern was also observed for AFB1 and AFB2 in Limpopo (0.43 to 1045.80 µg/kg and 0.13 to 3.44 µg/kg) and Free State (0.22 to 576.14 µg/kg and 0.11 to 2.82 µg/kg), respectively. More so, ZEN concentrations in summer (7.75 to 97.18 µg/kg) were higher than in winter (5.20 to 15.90 µg/kg). A similar observation was also noted for ZEN in Limpopo (7.80 to 97.18 µg/kg) and Free State (5.20 to 15.90 µg/kg). These findings were confirmed via Welch and Brown-Forsythe tests with significantly (p ≤ 0.05) higher mycotoxin levels produced by fungal strains obtained in samples during summer than those in winter. In contrast, the concentrations of mycotoxins produced by the fungal species from both provinces were not significantly (p > 0.05) different.
Collapse
|
4
|
Laut S, Poapolathep S, Piasai O, Sommai S, Boonyuen N, Giorgi M, Zhang Z, Fink-Gremmels J, Poapolathep A. Storage Fungi and Mycotoxins Associated with Rice Samples Commercialized in Thailand. Foods 2023; 12:487. [PMID: 36766016 PMCID: PMC9914209 DOI: 10.3390/foods12030487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The study focused on the examination of the different fungal species isolated from commercial rice samples, applying conventional culture techniques, as well as different molecular and phylogenic analyses to confirm phenotypic identification. Additionally, the mycotoxin production and contamination were analyzed using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 40 rice samples were obtained covering rice berry, red jasmine rice, brown rice, germinated brown rice, and white rice. The blotting paper technique applied on the 5 different types of rice samples detected 4285 seed-borne fungal infections (26.8%) for 16,000 rice grains. Gross morphological data revealed that 19 fungal isolates belonged to the genera Penicillium/Talaromyces (18 of 90 isolates; 20%) and Aspergillus (72 of 90 isolates; 80%). To check their morphologies, molecular data (fungal sequence-based BLAST results and a phylogenetic tree of the combined ITS, BenA, CaM, and RPB2 datasets) confirmed the initial classification. The phylogenic analysis revealed that eight isolates belonged to P. citrinum and, additionally, one isolate each belonged to P. chermesinum, A. niger, A. fumigatus, and A. tubingensis. Furthermore, four isolates of T. pinophilus and one isolate of each taxon were identified as Talaromyces (T. radicus, T. purpureogenum, and T. islandicus). The results showed that A. niger and T. pinophilus were two commonly occurring fungal species in rice samples. After subculturing, ochratoxin A (OTA), generated by T. pinophilus code W3-04, was discovered using LC-MS/MS. In addition, the Fusarium toxin beauvericin was detected in one of the samples. Aflatoxin B1 or other mycotoxins, such as citrinin, trichothecenes, and fumonisins, were detected. These preliminary findings should provide valuable guidance for hazard analysis critical control point concepts used by commercial food suppliers, including the analysis of multiple mycotoxins. Based on the current findings, mycotoxin analyses should focus on A. niger toxins, including OTA and metabolites of T. pinophilus (recently considered a producer of emerging mycotoxins) to exclude health hazards related to the traditionally high consumption of rice by Thai people.
Collapse
Affiliation(s)
- Seavchou Laut
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Onuma Piasai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sujinda Sommai
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mario Giorgi
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Adekoya I, Njobeh P, Obadina A, Landschoot S, Audenaert K, Okoth S, De Boevre M, De Saeger S. Investigation of the Metabolic Profile and Toxigenic Variability of Fungal Species Occurring in Fermented Foods and Beverage from Nigeria and South Africa Using UPLC-MS/MS. Toxins (Basel) 2019; 11:E85. [PMID: 30717215 PMCID: PMC6409632 DOI: 10.3390/toxins11020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 11/16/2022] Open
Abstract
Fungal species recovered from fermented foods and beverage from Nigeria and South Africa were studied to establish their toxigenic potential in producing an array of secondary metabolites including mycotoxins (n = 49) that could compromise human and animal safety. In total, 385 fungal isolates were grown on solidified yeast extract sucrose agar. Their metabolites were extracted and analyzed via ultra-performance liquid chromatography tandem mass spectrometry. To examine the grouping of isolates and co-occurrence of metabolites, hierarchal clustering and pairwise association analysis was performed. Of the 385 fungal strains tested, over 41% were toxigenic producing different mycotoxins. A. flavus and A. parasiticus strains were the principal producers of aflatoxin B₁ (27⁻7406 µg/kg). Aflatoxin B₁ and cyclopiazonic acid had a positive association. Ochratoxin A was produced by 67% of the A. niger strains in the range of 28⁻1302 µg/kg. The sterigmatocystin producers found were A. versicolor (n = 12), A. amstelodami (n = 4), and A. sydowii (n = 6). Apart from P. chrysogenum, none of the Penicillium spp. produced roquefortine C. Amongst the Fusarium strains tested, F. verticillioides produced fumonisin B₁ (range: 77⁻218 µg/kg) meanwhile low levels of deoxynivalenol were observed. The production of multiple metabolites by single fungal species was also evident.
Collapse
Affiliation(s)
- Ifeoluwa Adekoya
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein 2092, South Africa.
| | - Adewale Obadina
- Department of Food Science and Technology, Federal University of Agriculture, PMB, 2240 Abeokuta, Nigeria.
| | - Sofie Landschoot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium.
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, B-9000 Ghent, Belgium.
| | - Sheila Okoth
- Department of Botany, School of Biological Sciences, University of Nairobi, P.O. Box, Nairobi 30197, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|