1
|
Zheng T, Liu JH, Zhu TY, Li B, Li JS, Gu YY, Nie J, Xiong T, Lu FG. Novel insights into the glucose metabolic alterations of freshwater snails: a pathway to molluscicide innovation and snail control strategies. Parasitol Res 2024; 123:257. [PMID: 38940835 DOI: 10.1007/s00436-024-08274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
As ecosystem disruptors and intermediate hosts for various parasites, freshwater snails have significant socioeconomic impacts on human health, livestock production, and aquaculture. Although traditional molluscicides have been widely used to mitigate these effects, their environmental impact has encouraged research into alternative, biologically based strategies to create safer, more effective molluscicides and diminish the susceptibility of snails to parasites. This review focuses on alterations in glucose metabolism in snails under the multifaceted stressors of parasitic infections, drug exposure, and environmental changes and proposes a novel approach for snail management. Key enzymes within the glycolytic pathway, such as hexokinase and pyruvate kinase; tricarboxylic acid (TCA) cycle; and electron transport chains, such as succinate dehydrogenase and cytochrome c oxidase, are innovative targets for molluscicide development. These targets can affect both snails and parasites and provide an important direction for parasitic disease prevention research. For the first time, this review summarises the reverse TCA cycle and alternative oxidase pathway, which are unique metabolic bypasses in invertebrates that have emerged as suitable targets for the formulation of low-toxicity molluscicides. Additionally, it highlights the importance of other metabolic pathways, including lactate, alanine, glycogenolysis, and pentose phosphate pathways, in snail energy supply, antioxidant stress responses, and drug evasion mechanisms. By analysing the alterations in key metabolic enzymes and their products in stressed snails, this review deepens our understanding of glucose metabolic alterations in snails and provides valuable insights for identifying new pharmacological targets.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jia Hao Liu
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ting Yao Zhu
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bin Li
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jia Shan Li
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yun Yang Gu
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Juan Nie
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Xiong
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Fang Guo Lu
- Department of Microbiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
2
|
Xu S, Zhang YWQ, Habib MR, Li SZ, Yuan Y, Ke WH, Jiang N, Dong H, Zhao QP. Inhibition of alternative oxidase disrupts the development and oviposition of Biomphalaria glabrata snails. Parasit Vectors 2023; 16:73. [PMID: 36804043 PMCID: PMC9938623 DOI: 10.1186/s13071-022-05642-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Biomphalaria glabrata is one of the main intermediate hosts of Schistosoma mansoni, the most widespread species of Schistosoma. Our previous studies proved that alternative oxidase (AOX), the terminal oxidase in the mitochondrial respiratory chain, widely exists in several species of intermediate host snails of Schistosoma. Meanwhile, inhibition of AOX activity in Oncomelania hupensis snails could dramatically enhance the molluscicidal effect of niclosamide. As a hermaphroditic aquatic mollusc, the high fecundity and population density of B. glabrata increase the difficulty of snail control, which is one of the critical strategies for schistosomiasis elimination. The present study aimed to investigate the possible role of AOX in the development and fecundity of B. glabrata snail, which could be manipulated more manageable than other species of intermediate host snails of Schistosoma. METHODS The dynamic expression of the AOX gene was investigated in different developmental stages and tissues of B. glabrata, with morphological change and oviposition behaviour observed from juvenile to adult snails. Furtherly, dsRNA-mediated knockdown of BgAOX mRNA and the AOX protein activity inhibiting was performed to investigate the effect of AOX on the development and oviposition of snails. RESULTS The BgAOX gene expression profile is highly related to the development from late juveniles to adults, especially to the reproductive system of snails, with a positive correlation of 0.975 between egg production and BgAOX relative expression in ovotestis of snails. The inhibition of BgAOX at the transcriptional level and AOX activity could efficiently inhibit snail growth. However, the interference at the BgAOX protein activity level led to more severe tissue damage and more significant inhibition of oviposition than at the transcriptional level. This inhibition of growth and oviposition decreased gradually with the increase in the snail size. CONCLUSIONS The inhibition of AOX could efficiently disrupt the development and oviposition of B. glabrata snails, and the intervention targeting AOX at the juvenile stage is more effective for snails. This investigation explored the role of AOX in the growth and development of snails. It would benefit snail control in the future by providing a potential target while using molluscicides more efficiently.
Collapse
Affiliation(s)
- Sha Xu
- grid.49470.3e0000 0001 2331 6153Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province China
| | - Yang-Wen-Qing Zhang
- grid.49470.3e0000 0001 2331 6153Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province China
| | - Mohamed R. Habib
- grid.420091.e0000 0001 0165 571XMedical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Shi-Zhu Li
- grid.453135.50000 0004 1769 3691National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, National Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Yi Yuan
- Hubei Center for Disease Control and Prevention, Wuhan, Hubei Province China
| | - Wei Hao Ke
- grid.49470.3e0000 0001 2331 6153Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province China
| | - Ni Jiang
- grid.49470.3e0000 0001 2331 6153Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province China
| | - Huifen Dong
- grid.49470.3e0000 0001 2331 6153Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province China
| | - Qin-Ping Zhao
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Jiang N, Li SZ, Zhang YWQ, Habib MR, Xiong T, Xu S, Dong H, Zhao QP. The identification of alternative oxidase in intermediate host snails of Schistosoma and its potential role in protecting Oncomelania hupensis against niclosamide-induced stress. Parasit Vectors 2022; 15:97. [PMID: 35313980 PMCID: PMC8935807 DOI: 10.1186/s13071-022-05227-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Snail intermediate hosts are mandatory for the transmission of schistosomiasis, which has to date infected more than 200 million people worldwide. Our previous studies showed that niclosamide treatment caused the inhibition of aerobic respiration and oxidative phosphorylation, and the disruption of energy supply, in one of the intermediate hosts of schistosomiasis, Oncomelania hupensis, which eventually led to the death of the snails. Meanwhile, the terminal oxidase in the mitochondrial respiratory chain, alternative oxidase (AOX), was significantly up-regulated, which was thought to counterbalance the oxidative stress and maintain metabolic homeostasis in the snails. The aims of the present study are to identify the AOXs in several species of snails and investigate the potential activation of O. hupensis AOX (OhAOX) under niclosamide-induced stress, leading to enhanced survival of the snail when exposed to this molluscicide. METHODS The complete complementary DNA was amplified from the AOXs of O. hupensis and three species of Biomphalaria; the sequence characteristics were analysed and the phylogenetics investigated. The dynamic expression and localisation of the AOX gene and protein in O. hupensis under niclosamide-induced stress were examined. In addition, the expression pattern of genes in the mitochondrial respiratory complex was determined and the production of reactive oxygen species (ROS) calculated. Finally, the molluscicidal effect of niclosamide was compared between snails with and without inhibition of AOX activity. RESULTS AOXs containing the invertebrate AOX-specific motif NP-[YF]-XPG-[KQE] were identified from four species of snail, which phylogenetically clustered together into Gastropoda AOXs and further into Mollusca AOXs. After niclosamide treatment, the levels of OhAOX messenger RNA (mRNA) and OhAOX protein in the whole snail were 14.8 and 2.6 times those in untreated snails, respectively, but varied widely among tissues. Meanwhile, the level of cytochrome C reductase mRNA showed a significant decrease in the whole snail, and ROS production showed a significant decrease in the liver plus gonad (liver-gonad) of the snails. At 24 h post-treatment, the mortality of snails treated with 0.06-0.1 mg/L niclosamide and AOX inhibitor was 56.31-76.12% higher than that of snails treated with 0.1 mg/L niclosamide alone. CONCLUSIONS AOX was found in all the snail intermediate hosts of Schistosoma examined here. AOX was significantly activated in O. hupensis under niclosamide-induced stress, which led to a reduction in oxidative stress in the snail. The inhibition of AOX activity in snails can dramatically enhance the molluscicidal effect of niclosamide. A potential target for the development of an environmentally safe snail control method, which acts by inhibiting the activity of AOX, was identified in this study.
Collapse
Affiliation(s)
- Ni Jiang
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
- Joint Inspection Center of Precision Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi China
| | - Shi-Zhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, National Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Yang-Wen-Qing Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Mohamed R. Habib
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Tao Xiong
- Department of Microbiology, School of Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan China
| | - Sha Xu
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Huifen Dong
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| | - Qin-Ping Zhao
- Department of Parasitology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei China
| |
Collapse
|
4
|
Wang W, Huang S, Liu F, Sun Y, Wang X, Yao J, Li S, Liu Y, Luo B, Zhang X, Hu H, Deng Z, Duan L. Control of the Invasive Agricultural Pest Pomacea canaliculata with a Novel Molluscicide: Efficacy and Safety to Nontarget Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1079-1089. [PMID: 35060723 DOI: 10.1021/acs.jafc.1c07847] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The golden apple snail Pomacea canaliculata is an invasive pest that causes extensive damage to agricultural production. P. canaliculata is also an intermediate host of Angiostrongylus cantonensis, which causes human eosinophilic meningitis. In this study, the molluscicidal activity and safety profile of a novel molluscicide PBQ [1-(4-chlorophenyl)-3-(pyridin-3-yl)urea] were evaluated. PBQ exhibited strong molluscicidal potency against adult and juvenile snails (LC50 values of 0.39 and 0.07 mg/L, respectively). In field trials, PBQ killed 99.42% of the snails at 0.25 g a.i./m2. An acute toxicity test in rats demonstrated that PBQ is a generally nonhazardous chemical. PBQ is also generally safe for nontarget organisms including Brachydanio rerio, Daphnia magna, and Apis mellifera L. Transcriptomics analysis revealed that PBQ had a significant impact on the carbohydrate and lipid metabolism pathways, which provided insights into its molluscicidal mechanism. These results suggest that PBQ could be developed as an effective and safe molluscicide for P. canaliculata control.
Collapse
Affiliation(s)
- Weisi Wang
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | - Shuijin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yang Sun
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Xiangyun Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junmin Yao
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | - Shizhu Li
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| | - Yuhua Liu
- Dali Institute of Schistosomiasis Prevention and Control, Dali 671099, China
| | - Bingrong Luo
- Dali Institute of Schistosomiasis Prevention and Control, Dali 671099, China
| | - Xia Zhang
- Jiangling Institute of Schistosomiasis Prevention and Control, Jingzhou 434100, China
| | - Hehua Hu
- Jiangling Institute of Schistosomiasis Prevention and Control, Jingzhou 434100, China
| | - Zhuohui Deng
- Guangdong Provincial Center for Disease Control and Prevention, WHO Collaborating Centre for Surveillance, Research and Training of Emerging Infectious Diseases, Guangzhou 511430, China
| | - Liping Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
| |
Collapse
|